An integrated system for forecasting Arno River flash floods View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-03

AUTHORS

A. Carrara, P. Frontero, D. Maio, S. Rizzi

ABSTRACT

A system for effectively forecasting flash floods of the Arno River (Tuscany, Italy) should provide a flood warning with 10–12 h of lead time, primarily in order to evacuate the city of Florence. This goal may be achieved by acquiring and processing meteorological and hydrological data in real-time and, accordingly, by releasing alarms at different levels of reliability and concern. Through the application of both procedural language and expert system techniques, a prototype was developed which can readily handle a variety of relevant information and make predictions on flood hazard in Florence. The system was fairly successfully tested by processing simple meteorological data which enable a 24 hour forewarning to be released. More... »

PAGES

179-197

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00127005

DOI

http://dx.doi.org/10.1007/bf00127005

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044335008


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "CNR-CIOC, University of Bologna, Viale Risorgimento 2, 40136, Bologna, Italy", 
          "id": "http://www.grid.ac/institutes/grid.6292.f", 
          "name": [
            "CNR-CIOC, University of Bologna, Viale Risorgimento 2, 40136, Bologna, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carrara", 
        "givenName": "A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Geophysical Observatory, University of Modena, Via Campi 213/A, 41100, Modena, Italy", 
          "id": "http://www.grid.ac/institutes/grid.7548.e", 
          "name": [
            "Geophysical Observatory, University of Modena, Via Campi 213/A, 41100, Modena, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frontero", 
        "givenName": "P.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CNR-CIOC, University of Bologna, Viale Risorgimento 2, 40136, Bologna, Italy", 
          "id": "http://www.grid.ac/institutes/grid.6292.f", 
          "name": [
            "CNR-CIOC, University of Bologna, Viale Risorgimento 2, 40136, Bologna, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maio", 
        "givenName": "D.", 
        "id": "sg:person.013075040365.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013075040365.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CNR-CIOC, University of Bologna, Viale Risorgimento 2, 40136, Bologna, Italy", 
          "id": "http://www.grid.ac/institutes/grid.6292.f", 
          "name": [
            "CNR-CIOC, University of Bologna, Viale Risorgimento 2, 40136, Bologna, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rizzi", 
        "givenName": "S.", 
        "id": "sg:person.012370122532.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012370122532.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02523793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019783757", 
          "https://doi.org/10.1007/bf02523793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-4680-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012793387", 
          "https://doi.org/10.1007/978-94-009-4680-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1992-03", 
    "datePublishedReg": "1992-03-01", 
    "description": "A system for effectively forecasting flash floods of the Arno River (Tuscany, Italy) should provide a flood warning with 10\u201312 h of lead time, primarily in order to evacuate the city of Florence. This goal may be achieved by acquiring and processing meteorological and hydrological data in real-time and, accordingly, by releasing alarms at different levels of reliability and concern. Through the application of both procedural language and expert system techniques, a prototype was developed which can readily handle a variety of relevant information and make predictions on flood hazard in Florence. The system was fairly successfully tested by processing simple meteorological data which enable a 24 hour forewarning to be released.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00127005", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050117", 
        "issn": [
          "0921-030X", 
          "1573-0840"
        ], 
        "name": "Natural Hazards", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "keywords": [
      "expert system techniques", 
      "procedural languages", 
      "system techniques", 
      "flash floods", 
      "relevant information", 
      "integrated system", 
      "flood hazard", 
      "simple meteorological data", 
      "lead time", 
      "hydrological data", 
      "system", 
      "meteorological data", 
      "alarms", 
      "prototype", 
      "floods", 
      "different levels", 
      "language", 
      "information", 
      "Arno River", 
      "data", 
      "applications", 
      "reliability", 
      "city of Florence", 
      "goal", 
      "technique", 
      "prediction", 
      "order", 
      "variety", 
      "time", 
      "hazards", 
      "concern", 
      "River", 
      "city", 
      "Florence", 
      "hours", 
      "levels"
    ], 
    "name": "An integrated system for forecasting Arno River flash floods", 
    "pagination": "179-197", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044335008"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00127005"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00127005", 
      "https://app.dimensions.ai/details/publication/pub.1044335008"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_238.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00127005"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00127005'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00127005'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00127005'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00127005'


 

This table displays all metadata directly associated to this object as RDF triples.

135 TRIPLES      21 PREDICATES      66 URIs      53 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00127005 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 anzsrc-for:0406
4 anzsrc-for:17
5 anzsrc-for:1701
6 schema:author N69620cfb33d24974bc473ead63d95b11
7 schema:citation sg:pub.10.1007/978-94-009-4680-4
8 sg:pub.10.1007/bf02523793
9 schema:datePublished 1992-03
10 schema:datePublishedReg 1992-03-01
11 schema:description A system for effectively forecasting flash floods of the Arno River (Tuscany, Italy) should provide a flood warning with 10–12 h of lead time, primarily in order to evacuate the city of Florence. This goal may be achieved by acquiring and processing meteorological and hydrological data in real-time and, accordingly, by releasing alarms at different levels of reliability and concern. Through the application of both procedural language and expert system techniques, a prototype was developed which can readily handle a variety of relevant information and make predictions on flood hazard in Florence. The system was fairly successfully tested by processing simple meteorological data which enable a 24 hour forewarning to be released.
12 schema:genre article
13 schema:isAccessibleForFree false
14 schema:isPartOf N689f62fb3d734072950daed400fee89a
15 Nd00f316f64cf432f91683af8d3cb62eb
16 sg:journal.1050117
17 schema:keywords Arno River
18 Florence
19 River
20 alarms
21 applications
22 city
23 city of Florence
24 concern
25 data
26 different levels
27 expert system techniques
28 flash floods
29 flood hazard
30 floods
31 goal
32 hazards
33 hours
34 hydrological data
35 information
36 integrated system
37 language
38 lead time
39 levels
40 meteorological data
41 order
42 prediction
43 procedural languages
44 prototype
45 relevant information
46 reliability
47 simple meteorological data
48 system
49 system techniques
50 technique
51 time
52 variety
53 schema:name An integrated system for forecasting Arno River flash floods
54 schema:pagination 179-197
55 schema:productId N3d6113d017e44d79bd9bdb58f4cc6cd6
56 N8de0b7f9cacc4acf869d4c763610110b
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044335008
58 https://doi.org/10.1007/bf00127005
59 schema:sdDatePublished 2022-12-01T06:20
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher Neff2d87fbf244522868d549e222481a2
62 schema:url https://doi.org/10.1007/bf00127005
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N06d3cbf574e1493fbb4c1022f7252ade schema:affiliation grid-institutes:grid.6292.f
67 schema:familyName Carrara
68 schema:givenName A.
69 rdf:type schema:Person
70 N3d6113d017e44d79bd9bdb58f4cc6cd6 schema:name dimensions_id
71 schema:value pub.1044335008
72 rdf:type schema:PropertyValue
73 N48db4cc9b0ea467bbf9895492397ff2e schema:affiliation grid-institutes:grid.7548.e
74 schema:familyName Frontero
75 schema:givenName P.
76 rdf:type schema:Person
77 N689f62fb3d734072950daed400fee89a schema:volumeNumber 5
78 rdf:type schema:PublicationVolume
79 N69620cfb33d24974bc473ead63d95b11 rdf:first N06d3cbf574e1493fbb4c1022f7252ade
80 rdf:rest N923b58128be342baa67fc2c1666912b4
81 N8de0b7f9cacc4acf869d4c763610110b schema:name doi
82 schema:value 10.1007/bf00127005
83 rdf:type schema:PropertyValue
84 N923b58128be342baa67fc2c1666912b4 rdf:first N48db4cc9b0ea467bbf9895492397ff2e
85 rdf:rest Ndfbfc8a7a1e245e2bdc627dc2f0d878e
86 Nd00f316f64cf432f91683af8d3cb62eb schema:issueNumber 2
87 rdf:type schema:PublicationIssue
88 Ndfbfc8a7a1e245e2bdc627dc2f0d878e rdf:first sg:person.013075040365.65
89 rdf:rest Neabfa810418e496cb04d0b3c91a2696b
90 Neabfa810418e496cb04d0b3c91a2696b rdf:first sg:person.012370122532.25
91 rdf:rest rdf:nil
92 Neff2d87fbf244522868d549e222481a2 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
95 schema:name Earth Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
98 schema:name Atmospheric Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
101 schema:name Physical Geography and Environmental Geoscience
102 rdf:type schema:DefinedTerm
103 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
104 schema:name Psychology and Cognitive Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
107 schema:name Psychology
108 rdf:type schema:DefinedTerm
109 sg:journal.1050117 schema:issn 0921-030X
110 1573-0840
111 schema:name Natural Hazards
112 schema:publisher Springer Nature
113 rdf:type schema:Periodical
114 sg:person.012370122532.25 schema:affiliation grid-institutes:grid.6292.f
115 schema:familyName Rizzi
116 schema:givenName S.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012370122532.25
118 rdf:type schema:Person
119 sg:person.013075040365.65 schema:affiliation grid-institutes:grid.6292.f
120 schema:familyName Maio
121 schema:givenName D.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013075040365.65
123 rdf:type schema:Person
124 sg:pub.10.1007/978-94-009-4680-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012793387
125 https://doi.org/10.1007/978-94-009-4680-4
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/bf02523793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019783757
128 https://doi.org/10.1007/bf02523793
129 rdf:type schema:CreativeWork
130 grid-institutes:grid.6292.f schema:alternateName CNR-CIOC, University of Bologna, Viale Risorgimento 2, 40136, Bologna, Italy
131 schema:name CNR-CIOC, University of Bologna, Viale Risorgimento 2, 40136, Bologna, Italy
132 rdf:type schema:Organization
133 grid-institutes:grid.7548.e schema:alternateName Geophysical Observatory, University of Modena, Via Campi 213/A, 41100, Modena, Italy
134 schema:name Geophysical Observatory, University of Modena, Via Campi 213/A, 41100, Modena, Italy
135 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...