The hertz contact problem with finite friction View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1975-11

AUTHORS

D. A. Spence

ABSTRACT

The indentation of an elastic half-space by an axisymmetric punch under a monotonically applied normal force is formulated as a mixed boundary value problem under the assumption of Coulomb friction with coefficient μ in the region of contact. Within an inner circle the contact is adhesive, while in the surrounding annulus the surface moves inwards with increasing load. The slip boundary between the two regions depends on μ and the Poisson ratio v, and is found uniquely as an eigenvalue of a certain integral equation. For power law indentors of the form z∝rn, a group property of the integral operator connecting stresses and displacements makes it possible to derive the contact stress distributions from those under a flat punch by a simple quadrature, and shows that the slip radius is the same in all such cases. An iterative numerical solution using a dual system of Volterra equations is described, and calculated distributions of surface stress presented for the cases of indentation by a flat punch and by a sphere. More... »

PAGES

297-319

References to SciGraph publications

  • 1966-11. Some least work principles for elastic bodies in ZEITSCHRIFT FÜR ANGEWANDTE MATHEMATIK UND PHYSIK
  • 1975. Similarity considerations for contact between dissimilar elastic bodies in THE MECHANICS OF THE CONTACT BETWEEN DEFORMABLE BODIES
  • 1954. Handbook of Elliptic Integrals for Engineers and Physicists in NONE
  • Journal

    TITLE

    Journal of Elasticity

    ISSUE

    3-4

    VOLUME

    5

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf00126993

    DOI

    http://dx.doi.org/10.1007/bf00126993

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1021845772


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Wisconsin\u2013Madison", 
              "id": "https://www.grid.ac/institutes/grid.14003.36", 
              "name": [
                "Department of Engineering Science, University of Oxford, Oxford, England", 
                "Mathematics Research Center, University of Wisconsin, 53706, Madison, Wisconsin, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Spence", 
            "givenName": "D. A.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1001750401", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-52803-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001750401", 
              "https://doi.org/10.1007/978-3-642-52803-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-52803-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001750401", 
              "https://doi.org/10.1007/978-3-642-52803-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspa.1968.0105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017071032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01595104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019729185", 
              "https://doi.org/10.1007/bf01595104"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01595104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019729185", 
              "https://doi.org/10.1007/bf01595104"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0021-8928(66)90065-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040026925"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0021-8928(66)90065-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040026925"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0021-8928(63)90150-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047246259"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0021-8928(63)90150-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047246259"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0305004100042390", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053909730"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0305004100047666", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053922637"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-011-8137-2_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089803624", 
              "https://doi.org/10.1007/978-94-011-8137-2_5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1975-11", 
        "datePublishedReg": "1975-11-01", 
        "description": "The indentation of an elastic half-space by an axisymmetric punch under a monotonically applied normal force is formulated as a mixed boundary value problem under the assumption of Coulomb friction with coefficient \u03bc in the region of contact. Within an inner circle the contact is adhesive, while in the surrounding annulus the surface moves inwards with increasing load. The slip boundary between the two regions depends on \u03bc and the Poisson ratio v, and is found uniquely as an eigenvalue of a certain integral equation. For power law indentors of the form z\u221drn, a group property of the integral operator connecting stresses and displacements makes it possible to derive the contact stress distributions from those under a flat punch by a simple quadrature, and shows that the slip radius is the same in all such cases. An iterative numerical solution using a dual system of Volterra equations is described, and calculated distributions of surface stress presented for the cases of indentation by a flat punch and by a sphere.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf00126993", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1124111", 
            "issn": [
              "0374-3535", 
              "1573-2681"
            ], 
            "name": "Journal of Elasticity", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3-4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "5"
          }
        ], 
        "name": "The hertz contact problem with finite friction", 
        "pagination": "297-319", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "68147e2bf00a0d2b872b870be14e54cb2ffd1e549cd3faa1d7661ef500ab7756"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf00126993"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1021845772"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf00126993", 
          "https://app.dimensions.ai/details/publication/pub.1021845772"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:52", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130805_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF00126993"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00126993'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00126993'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00126993'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00126993'


     

    This table displays all metadata directly associated to this object as RDF triples.

    90 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf00126993 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Nf8dd7c6ed5f54910b4db07e3b4a2e61a
    4 schema:citation sg:pub.10.1007/978-3-642-52803-3
    5 sg:pub.10.1007/978-94-011-8137-2_5
    6 sg:pub.10.1007/bf01595104
    7 https://app.dimensions.ai/details/publication/pub.1001750401
    8 https://doi.org/10.1016/0021-8928(63)90150-3
    9 https://doi.org/10.1016/0021-8928(66)90065-7
    10 https://doi.org/10.1017/s0305004100042390
    11 https://doi.org/10.1017/s0305004100047666
    12 https://doi.org/10.1098/rspa.1968.0105
    13 schema:datePublished 1975-11
    14 schema:datePublishedReg 1975-11-01
    15 schema:description The indentation of an elastic half-space by an axisymmetric punch under a monotonically applied normal force is formulated as a mixed boundary value problem under the assumption of Coulomb friction with coefficient μ in the region of contact. Within an inner circle the contact is adhesive, while in the surrounding annulus the surface moves inwards with increasing load. The slip boundary between the two regions depends on μ and the Poisson ratio v, and is found uniquely as an eigenvalue of a certain integral equation. For power law indentors of the form z∝rn, a group property of the integral operator connecting stresses and displacements makes it possible to derive the contact stress distributions from those under a flat punch by a simple quadrature, and shows that the slip radius is the same in all such cases. An iterative numerical solution using a dual system of Volterra equations is described, and calculated distributions of surface stress presented for the cases of indentation by a flat punch and by a sphere.
    16 schema:genre research_article
    17 schema:inLanguage en
    18 schema:isAccessibleForFree false
    19 schema:isPartOf N0230107dee164c688a959e2bd29b9f45
    20 N98467351859f4865869fdfa4577d2f85
    21 sg:journal.1124111
    22 schema:name The hertz contact problem with finite friction
    23 schema:pagination 297-319
    24 schema:productId N3337861ade5045d48564c5763d26a854
    25 N65b3f4245a8c4622b4d164a641eefd5c
    26 Ne61cbc12c06742ec9a257a6e92cb5f42
    27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021845772
    28 https://doi.org/10.1007/bf00126993
    29 schema:sdDatePublished 2019-04-11T13:52
    30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    31 schema:sdPublisher N67aff8b53eac4181858dda3fb59a5f09
    32 schema:url http://link.springer.com/10.1007/BF00126993
    33 sgo:license sg:explorer/license/
    34 sgo:sdDataset articles
    35 rdf:type schema:ScholarlyArticle
    36 N0230107dee164c688a959e2bd29b9f45 schema:issueNumber 3-4
    37 rdf:type schema:PublicationIssue
    38 N050982508aef4572bdb2ec6abf304300 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
    39 schema:familyName Spence
    40 schema:givenName D. A.
    41 rdf:type schema:Person
    42 N3337861ade5045d48564c5763d26a854 schema:name doi
    43 schema:value 10.1007/bf00126993
    44 rdf:type schema:PropertyValue
    45 N65b3f4245a8c4622b4d164a641eefd5c schema:name readcube_id
    46 schema:value 68147e2bf00a0d2b872b870be14e54cb2ffd1e549cd3faa1d7661ef500ab7756
    47 rdf:type schema:PropertyValue
    48 N67aff8b53eac4181858dda3fb59a5f09 schema:name Springer Nature - SN SciGraph project
    49 rdf:type schema:Organization
    50 N98467351859f4865869fdfa4577d2f85 schema:volumeNumber 5
    51 rdf:type schema:PublicationVolume
    52 Ne61cbc12c06742ec9a257a6e92cb5f42 schema:name dimensions_id
    53 schema:value pub.1021845772
    54 rdf:type schema:PropertyValue
    55 Nf8dd7c6ed5f54910b4db07e3b4a2e61a rdf:first N050982508aef4572bdb2ec6abf304300
    56 rdf:rest rdf:nil
    57 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    58 schema:name Engineering
    59 rdf:type schema:DefinedTerm
    60 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    61 schema:name Materials Engineering
    62 rdf:type schema:DefinedTerm
    63 sg:journal.1124111 schema:issn 0374-3535
    64 1573-2681
    65 schema:name Journal of Elasticity
    66 rdf:type schema:Periodical
    67 sg:pub.10.1007/978-3-642-52803-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001750401
    68 https://doi.org/10.1007/978-3-642-52803-3
    69 rdf:type schema:CreativeWork
    70 sg:pub.10.1007/978-94-011-8137-2_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089803624
    71 https://doi.org/10.1007/978-94-011-8137-2_5
    72 rdf:type schema:CreativeWork
    73 sg:pub.10.1007/bf01595104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019729185
    74 https://doi.org/10.1007/bf01595104
    75 rdf:type schema:CreativeWork
    76 https://app.dimensions.ai/details/publication/pub.1001750401 schema:CreativeWork
    77 https://doi.org/10.1016/0021-8928(63)90150-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047246259
    78 rdf:type schema:CreativeWork
    79 https://doi.org/10.1016/0021-8928(66)90065-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040026925
    80 rdf:type schema:CreativeWork
    81 https://doi.org/10.1017/s0305004100042390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053909730
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1017/s0305004100047666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053922637
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1098/rspa.1968.0105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017071032
    86 rdf:type schema:CreativeWork
    87 https://www.grid.ac/institutes/grid.14003.36 schema:alternateName University of Wisconsin–Madison
    88 schema:name Department of Engineering Science, University of Oxford, Oxford, England
    89 Mathematics Research Center, University of Wisconsin, 53706, Madison, Wisconsin, USA
    90 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...