Optimal ternary linear codes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-06

AUTHORS

R. Hill, D. E. Newton

ABSTRACT

Let nq(k, d) denote the smallest value of n for which there exists a linear [n, k, d]-code over GF(q). An [n, k, d]-code whose length is equal to nq(k, d) is called optimal. The problem of finding nq(k, d)has received much attention for the case q = 2. We generalize several results to the case of an arbitrary prime power q as well as introducing new results and a detailed methodology to enable the problem to be tackled over any finite field. In particular, we study the problem with q = 3 and determine n3(k, d) for all d when k ≤ 4, and n3(5, d) for all but 30 values of d. More... »

PAGES

137-157

References to SciGraph publications

  • 1992-03. Optimal ternary quasi-cyclic codes in DESIGNS, CODES AND CRYPTOGRAPHY
  • Journal

    TITLE

    Designs, Codes and Cryptography

    ISSUE

    2

    VOLUME

    2

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf00124893

    DOI

    http://dx.doi.org/10.1007/bf00124893

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1013202794


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Salford", 
              "id": "https://www.grid.ac/institutes/grid.8752.8", 
              "name": [
                "Department of Mathematics & Computer Science, University of Salford, M5 4WT, Salford, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hill", 
            "givenName": "R.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Salford", 
              "id": "https://www.grid.ac/institutes/grid.8752.8", 
              "name": [
                "Department of Mathematics & Computer Science, University of Salford, M5 4WT, Salford, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Newton", 
            "givenName": "D. E.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00124211", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002549806", 
              "https://doi.org/10.1007/bf00124211"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00124211", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002549806", 
              "https://doi.org/10.1007/bf00124211"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0019-9958(65)90080-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021183709"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0012-365x(81)90166-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022020593"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0012-365x(89)90353-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027896808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0097-3165(83)90002-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028106187"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0012-365x(78)90120-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029113423"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1049/el:19700293", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056760675"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/18.54894", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061100108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tit.1973.1055009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061647284"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tit.1987.1057356", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061649468"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tit.1987.1057363", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061649474"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1147/rd.45.0532", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063182564"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1992-06", 
        "datePublishedReg": "1992-06-01", 
        "description": "Let nq(k, d) denote the smallest value of n for which there exists a linear [n, k, d]-code over GF(q). An [n, k, d]-code whose length is equal to nq(k, d) is called optimal. The problem of finding nq(k, d)has received much attention for the case q = 2. We generalize several results to the case of an arbitrary prime power q as well as introducing new results and a detailed methodology to enable the problem to be tackled over any finite field. In particular, we study the problem with q = 3 and determine n3(k, d) for all d when k \u2264 4, and n3(5, d) for all but 30 values of d.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf00124893", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136552", 
            "issn": [
              "0925-1022", 
              "1573-7586"
            ], 
            "name": "Designs, Codes and Cryptography", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2"
          }
        ], 
        "name": "Optimal ternary linear codes", 
        "pagination": "137-157", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "3ee50ee86707d43c414dd3985eab52759e8222dc7ae4307197f9d1d613462e81"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf00124893"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1013202794"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf00124893", 
          "https://app.dimensions.ai/details/publication/pub.1013202794"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130817_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF00124893"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00124893'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00124893'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00124893'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00124893'


     

    This table displays all metadata directly associated to this object as RDF triples.

    103 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf00124893 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author N3b96aad92f13459f92fb46106ab08295
    4 schema:citation sg:pub.10.1007/bf00124211
    5 https://doi.org/10.1016/0012-365x(78)90120-6
    6 https://doi.org/10.1016/0012-365x(81)90166-7
    7 https://doi.org/10.1016/0012-365x(89)90353-1
    8 https://doi.org/10.1016/0097-3165(83)90002-x
    9 https://doi.org/10.1016/s0019-9958(65)90080-x
    10 https://doi.org/10.1049/el:19700293
    11 https://doi.org/10.1109/18.54894
    12 https://doi.org/10.1109/tit.1973.1055009
    13 https://doi.org/10.1109/tit.1987.1057356
    14 https://doi.org/10.1109/tit.1987.1057363
    15 https://doi.org/10.1147/rd.45.0532
    16 schema:datePublished 1992-06
    17 schema:datePublishedReg 1992-06-01
    18 schema:description Let nq(k, d) denote the smallest value of n for which there exists a linear [n, k, d]-code over GF(q). An [n, k, d]-code whose length is equal to nq(k, d) is called optimal. The problem of finding nq(k, d)has received much attention for the case q = 2. We generalize several results to the case of an arbitrary prime power q as well as introducing new results and a detailed methodology to enable the problem to be tackled over any finite field. In particular, we study the problem with q = 3 and determine n3(k, d) for all d when k ≤ 4, and n3(5, d) for all but 30 values of d.
    19 schema:genre research_article
    20 schema:inLanguage en
    21 schema:isAccessibleForFree false
    22 schema:isPartOf Nc0715ec8c77c43deb217637016884b54
    23 Ne096cb66f58942c993acdb03d8310fdb
    24 sg:journal.1136552
    25 schema:name Optimal ternary linear codes
    26 schema:pagination 137-157
    27 schema:productId N30b9c791400447739c0cc0793a80c4c3
    28 N35926141414f467b92ce82a83be4bd40
    29 N569f53566bc3422eb9f9d7fa9345ed54
    30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013202794
    31 https://doi.org/10.1007/bf00124893
    32 schema:sdDatePublished 2019-04-11T13:56
    33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    34 schema:sdPublisher N3d55383400034c4d9a9f7cec56664e32
    35 schema:url http://link.springer.com/10.1007/BF00124893
    36 sgo:license sg:explorer/license/
    37 sgo:sdDataset articles
    38 rdf:type schema:ScholarlyArticle
    39 N0bfa728a54ac4f758bfc64af0c974d10 schema:affiliation https://www.grid.ac/institutes/grid.8752.8
    40 schema:familyName Newton
    41 schema:givenName D. E.
    42 rdf:type schema:Person
    43 N18dee9dcae1e4117a5b73153deb5ffd6 rdf:first N0bfa728a54ac4f758bfc64af0c974d10
    44 rdf:rest rdf:nil
    45 N30b9c791400447739c0cc0793a80c4c3 schema:name readcube_id
    46 schema:value 3ee50ee86707d43c414dd3985eab52759e8222dc7ae4307197f9d1d613462e81
    47 rdf:type schema:PropertyValue
    48 N35926141414f467b92ce82a83be4bd40 schema:name dimensions_id
    49 schema:value pub.1013202794
    50 rdf:type schema:PropertyValue
    51 N3b96aad92f13459f92fb46106ab08295 rdf:first Ne2128738134244ce9b87a7b5ed32843d
    52 rdf:rest N18dee9dcae1e4117a5b73153deb5ffd6
    53 N3d55383400034c4d9a9f7cec56664e32 schema:name Springer Nature - SN SciGraph project
    54 rdf:type schema:Organization
    55 N569f53566bc3422eb9f9d7fa9345ed54 schema:name doi
    56 schema:value 10.1007/bf00124893
    57 rdf:type schema:PropertyValue
    58 Nc0715ec8c77c43deb217637016884b54 schema:issueNumber 2
    59 rdf:type schema:PublicationIssue
    60 Ne096cb66f58942c993acdb03d8310fdb schema:volumeNumber 2
    61 rdf:type schema:PublicationVolume
    62 Ne2128738134244ce9b87a7b5ed32843d schema:affiliation https://www.grid.ac/institutes/grid.8752.8
    63 schema:familyName Hill
    64 schema:givenName R.
    65 rdf:type schema:Person
    66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Mathematical Sciences
    68 rdf:type schema:DefinedTerm
    69 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Statistics
    71 rdf:type schema:DefinedTerm
    72 sg:journal.1136552 schema:issn 0925-1022
    73 1573-7586
    74 schema:name Designs, Codes and Cryptography
    75 rdf:type schema:Periodical
    76 sg:pub.10.1007/bf00124211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002549806
    77 https://doi.org/10.1007/bf00124211
    78 rdf:type schema:CreativeWork
    79 https://doi.org/10.1016/0012-365x(78)90120-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029113423
    80 rdf:type schema:CreativeWork
    81 https://doi.org/10.1016/0012-365x(81)90166-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022020593
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1016/0012-365x(89)90353-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027896808
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1016/0097-3165(83)90002-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028106187
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1016/s0019-9958(65)90080-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021183709
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1049/el:19700293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056760675
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1109/18.54894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061100108
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1109/tit.1973.1055009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061647284
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1109/tit.1987.1057356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061649468
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1109/tit.1987.1057363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061649474
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1147/rd.45.0532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063182564
    100 rdf:type schema:CreativeWork
    101 https://www.grid.ac/institutes/grid.8752.8 schema:alternateName University of Salford
    102 schema:name Department of Mathematics & Computer Science, University of Salford, M5 4WT, Salford, UK
    103 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...