The Jamison method in galois geometries View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1991-09

AUTHORS

A. A. Bruen, J. C. Fisher

ABSTRACT

In a fundamental paper R.E. Jamison showed, among other things, that any subset of the points of AG(n, q) that intersects all hyperplanes contains at least n(q − 1) + 1 points. Here we show that the method of proof used by Jamison can be applied to several other basic problems in finite geometries of a varied nature. These problems include the celebrated flock theorem and also the characterization of the elements of GF(q) as a set of squares in GF(q2) with certain properties. This last result, due to A. Blokhuis, settled a well-known conjecture due to J.H. van Lint and the late J. MacWilliams. More... »

PAGES

199-205

References to SciGraph publications

  • 1973-10. Circle geometry in higher dimensions. II in GEOMETRIAE DEDICATA
  • 1979-02. Flocks inPG(3,q) in MATHEMATISCHE ZEITSCHRIFT
  • 1988-08. Conics, order, and k-arcs in AG(2,q) with q odd in JOURNAL OF GEOMETRY
  • 1976-05. A characterization of subregular spreads in finite 3-space in GEOMETRIAE DEDICATA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf00123760

    DOI

    http://dx.doi.org/10.1007/bf00123760

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1036467221


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Western University", 
              "id": "https://www.grid.ac/institutes/grid.39381.30", 
              "name": [
                "Department of Mathematics, Middlesex College, The University of Western Ontario, N6A 5B7, London, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bruen", 
            "givenName": "A. A.", 
            "id": "sg:person.010620072145.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010620072145.82"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Regina", 
              "id": "https://www.grid.ac/institutes/grid.57926.3f", 
              "name": [
                "Department of Mathematics, University of Regina, S4S 0A2, Regina, Saskatchewan, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fisher", 
            "givenName": "J. C.", 
            "id": "sg:person.014063603604.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014063603604.92"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00148138", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017953199", 
              "https://doi.org/10.1007/bf00148138"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00148138", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017953199", 
              "https://doi.org/10.1007/bf00148138"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0097-3165(77)90001-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028251449"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00147854", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028334833", 
              "https://doi.org/10.1007/bf00147854"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00147854", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028334833", 
              "https://doi.org/10.1007/bf00147854"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0097-3165(71)90048-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029152980"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01214908", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032279266", 
              "https://doi.org/10.1007/bf01214908"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01214908", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032279266", 
              "https://doi.org/10.1007/bf01214908"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/1385-7258(84)90036-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046184074"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01222519", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048121970", 
              "https://doi.org/10.1007/bf01222519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01222519", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048121970", 
              "https://doi.org/10.1007/bf01222519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0097-3165(92)90035-s", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049425576"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4153/cjm-1975-119-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072266085"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1991-09", 
        "datePublishedReg": "1991-09-01", 
        "description": "In a fundamental paper R.E. Jamison showed, among other things, that any subset of the points of AG(n, q) that intersects all hyperplanes contains at least n(q \u2212 1) + 1 points. Here we show that the method of proof used by Jamison can be applied to several other basic problems in finite geometries of a varied nature. These problems include the celebrated flock theorem and also the characterization of the elements of GF(q) as a set of squares in GF(q2) with certain properties. This last result, due to A. Blokhuis, settled a well-known conjecture due to J.H. van Lint and the late J. MacWilliams.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf00123760", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136552", 
            "issn": [
              "0925-1022", 
              "1573-7586"
            ], 
            "name": "Designs, Codes and Cryptography", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "1"
          }
        ], 
        "name": "The Jamison method in galois geometries", 
        "pagination": "199-205", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "adb737847bb5254e07f6bd8b5929a75e2ccc0bef41f60e488d8e3444798c0c16"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf00123760"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1036467221"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf00123760", 
          "https://app.dimensions.ai/details/publication/pub.1036467221"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130817_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF00123760"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00123760'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00123760'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00123760'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00123760'


     

    This table displays all metadata directly associated to this object as RDF triples.

    102 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf00123760 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N9df2367757344d6780eec417900cb3e2
    4 schema:citation sg:pub.10.1007/bf00147854
    5 sg:pub.10.1007/bf00148138
    6 sg:pub.10.1007/bf01214908
    7 sg:pub.10.1007/bf01222519
    8 https://doi.org/10.1016/0097-3165(71)90048-3
    9 https://doi.org/10.1016/0097-3165(77)90001-2
    10 https://doi.org/10.1016/0097-3165(92)90035-s
    11 https://doi.org/10.1016/1385-7258(84)90036-2
    12 https://doi.org/10.4153/cjm-1975-119-4
    13 schema:datePublished 1991-09
    14 schema:datePublishedReg 1991-09-01
    15 schema:description In a fundamental paper R.E. Jamison showed, among other things, that any subset of the points of AG(n, q) that intersects all hyperplanes contains at least n(q − 1) + 1 points. Here we show that the method of proof used by Jamison can be applied to several other basic problems in finite geometries of a varied nature. These problems include the celebrated flock theorem and also the characterization of the elements of GF(q) as a set of squares in GF(q2) with certain properties. This last result, due to A. Blokhuis, settled a well-known conjecture due to J.H. van Lint and the late J. MacWilliams.
    16 schema:genre research_article
    17 schema:inLanguage en
    18 schema:isAccessibleForFree false
    19 schema:isPartOf N693a8f8323054d3d8838203014a8efc6
    20 Nce70076b2e744494b131ba5e47b166fd
    21 sg:journal.1136552
    22 schema:name The Jamison method in galois geometries
    23 schema:pagination 199-205
    24 schema:productId N0275256d871841ea834bac3e631506e1
    25 N98d7a1a9afa44f3ea4326e7a6e8e94e2
    26 Nd820445ffbd047089a1e80c1acf967ea
    27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036467221
    28 https://doi.org/10.1007/bf00123760
    29 schema:sdDatePublished 2019-04-11T13:56
    30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    31 schema:sdPublisher Na4f0d4bcd63c491e8cc03e163419758d
    32 schema:url http://link.springer.com/10.1007/BF00123760
    33 sgo:license sg:explorer/license/
    34 sgo:sdDataset articles
    35 rdf:type schema:ScholarlyArticle
    36 N0275256d871841ea834bac3e631506e1 schema:name readcube_id
    37 schema:value adb737847bb5254e07f6bd8b5929a75e2ccc0bef41f60e488d8e3444798c0c16
    38 rdf:type schema:PropertyValue
    39 N62d0e66f3d89429c9260d0239c81bfe7 rdf:first sg:person.014063603604.92
    40 rdf:rest rdf:nil
    41 N693a8f8323054d3d8838203014a8efc6 schema:volumeNumber 1
    42 rdf:type schema:PublicationVolume
    43 N98d7a1a9afa44f3ea4326e7a6e8e94e2 schema:name dimensions_id
    44 schema:value pub.1036467221
    45 rdf:type schema:PropertyValue
    46 N9df2367757344d6780eec417900cb3e2 rdf:first sg:person.010620072145.82
    47 rdf:rest N62d0e66f3d89429c9260d0239c81bfe7
    48 Na4f0d4bcd63c491e8cc03e163419758d schema:name Springer Nature - SN SciGraph project
    49 rdf:type schema:Organization
    50 Nce70076b2e744494b131ba5e47b166fd schema:issueNumber 3
    51 rdf:type schema:PublicationIssue
    52 Nd820445ffbd047089a1e80c1acf967ea schema:name doi
    53 schema:value 10.1007/bf00123760
    54 rdf:type schema:PropertyValue
    55 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    56 schema:name Mathematical Sciences
    57 rdf:type schema:DefinedTerm
    58 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    59 schema:name Pure Mathematics
    60 rdf:type schema:DefinedTerm
    61 sg:journal.1136552 schema:issn 0925-1022
    62 1573-7586
    63 schema:name Designs, Codes and Cryptography
    64 rdf:type schema:Periodical
    65 sg:person.010620072145.82 schema:affiliation https://www.grid.ac/institutes/grid.39381.30
    66 schema:familyName Bruen
    67 schema:givenName A. A.
    68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010620072145.82
    69 rdf:type schema:Person
    70 sg:person.014063603604.92 schema:affiliation https://www.grid.ac/institutes/grid.57926.3f
    71 schema:familyName Fisher
    72 schema:givenName J. C.
    73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014063603604.92
    74 rdf:type schema:Person
    75 sg:pub.10.1007/bf00147854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028334833
    76 https://doi.org/10.1007/bf00147854
    77 rdf:type schema:CreativeWork
    78 sg:pub.10.1007/bf00148138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017953199
    79 https://doi.org/10.1007/bf00148138
    80 rdf:type schema:CreativeWork
    81 sg:pub.10.1007/bf01214908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032279266
    82 https://doi.org/10.1007/bf01214908
    83 rdf:type schema:CreativeWork
    84 sg:pub.10.1007/bf01222519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048121970
    85 https://doi.org/10.1007/bf01222519
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1016/0097-3165(71)90048-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029152980
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1016/0097-3165(77)90001-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028251449
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1016/0097-3165(92)90035-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1049425576
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1016/1385-7258(84)90036-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046184074
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.4153/cjm-1975-119-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072266085
    96 rdf:type schema:CreativeWork
    97 https://www.grid.ac/institutes/grid.39381.30 schema:alternateName Western University
    98 schema:name Department of Mathematics, Middlesex College, The University of Western Ontario, N6A 5B7, London, Ontario, Canada
    99 rdf:type schema:Organization
    100 https://www.grid.ac/institutes/grid.57926.3f schema:alternateName University of Regina
    101 schema:name Department of Mathematics, University of Regina, S4S 0A2, Regina, Saskatchewan, Canada
    102 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...