Advances in prospect theory: Cumulative representation of uncertainty View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1992-10

AUTHORS

Amos Tversky, Daniel Kahneman

ABSTRACT

We develop a new version of prospect theory that employs cumulative rather than separable decision weights and extends the theory in several respects. This version, called cumulative prospect theory, applies to uncertain as well as to risky prospects with any number of outcomes, and it allows different weighting functions for gains and for losses. Two principles, diminishing sensitivity and loss aversion, are invoked to explain the characteristic curvature of the value function and the weighting functions. A review of the experimental evidence and the results of a new experiment confirm a distinctive fourfold pattern of risk attitudes: risk aversion for gains and risk seeking for losses of high probability; risk seeking for gains and risk aversion for losses of low probability. This article has benefited from discussions with Colin Camerer, Chew Soo-Hong, David Freedman, and David H. Krantz. We are especially grateful to Peter P. Wakker for his invaluable input and contribution to the axiomatic analysis. We are indebted to Richard Gonzalez and Amy Hayes for running the experiment and analyzing the data. This work was supported by Grants 89-0064 and 88-0206 from the Air Force Office of Scientific Research, by Grant SES-9109535 from the National Science Foundation, and by the Sloan Foundation. More... »

PAGES

297-323

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00122574

DOI

http://dx.doi.org/10.1007/bf00122574

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041153045


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Psychology, Stanford University, 94305-2130, Stanford, CA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tversky", 
        "givenName": "Amos", 
        "id": "sg:person.01020177032.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020177032.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Department of Psychology, University of California at Berkeley, 94720, Berkeley, CA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kahneman", 
        "givenName": "Daniel", 
        "id": "sg:person.0103156353.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0103156353.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0749-5978(87)90043-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003439845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0033-295x.95.3.371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004422782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00057884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005516868", 
          "https://doi.org/10.1007/bf00057884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00116783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006002980", 
          "https://doi.org/10.1007/bf00116783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02283517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009726464", 
          "https://doi.org/10.1007/bf02283517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02283517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009726464", 
          "https://doi.org/10.1007/bf02283517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-4896(81)90018-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012639305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0003-066x.39.4.341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020060348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-4068(89)90002-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020787040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-7815-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023437857", 
          "https://doi.org/10.1007/978-94-015-7815-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-7815-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023437857", 
          "https://doi.org/10.1007/978-94-015-7815-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0030-5073(80)90037-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023475914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/h0026750", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025426424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2681(82)90008-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026562570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02283529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030121019", 
          "https://doi.org/10.1007/bf02283529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02283529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030121019", 
          "https://doi.org/10.1007/bf02283529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0531(87)90020-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032657057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1465-7295.1982.tb01138.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032958523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-2952-7_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035467720", 
          "https://doi.org/10.1007/978-94-011-2952-7_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-2952-7_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035467720", 
          "https://doi.org/10.1007/978-94-011-2952-7_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0531(90)90022-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035773743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02283515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037594807", 
          "https://doi.org/10.1007/bf02283515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02283515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037594807", 
          "https://doi.org/10.1007/bf02283515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00057885", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038172336", 
          "https://doi.org/10.1007/bf00057885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00055711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045035294", 
          "https://doi.org/10.1007/bf00055711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00055711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045035294", 
          "https://doi.org/10.1007/bf00055711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00209389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046219704", 
          "https://doi.org/10.1007/bf00209389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00209389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046219704", 
          "https://doi.org/10.1007/bf00209389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-4068(87)90022-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047527043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-9728-1_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047783463", 
          "https://doi.org/10.1007/978-1-4613-9728-1_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/296365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058606191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1257/jep.1.1.121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064529725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/mnsc.36.7.780", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064720717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1884324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069625544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1907264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069636752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1907921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069637200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1911053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069639345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1911158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069639410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1914185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069641248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2232669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069846426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2232669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069846426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2937956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070139661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5802/aif.53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073139172"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1992-10", 
    "datePublishedReg": "1992-10-01", 
    "description": "We develop a new version of prospect theory that employs cumulative rather than separable decision weights and extends the theory in several respects. This version, called cumulative prospect theory, applies to uncertain as well as to risky prospects with any number of outcomes, and it allows different weighting functions for gains and for losses. Two principles, diminishing sensitivity and loss aversion, are invoked to explain the characteristic curvature of the value function and the weighting functions. A review of the experimental evidence and the results of a new experiment confirm a distinctive fourfold pattern of risk attitudes: risk aversion for gains and risk seeking for losses of high probability; risk seeking for gains and risk aversion for losses of low probability. This article has benefited from discussions with Colin Camerer, Chew Soo-Hong, David Freedman, and David H. Krantz. We are especially grateful to Peter P. Wakker for his invaluable input and contribution to the axiomatic analysis. We are indebted to Richard Gonzalez and Amy Hayes for running the experiment and analyzing the data. This work was supported by Grants 89-0064 and 88-0206 from the Air Force Office of Scientific Research, by Grant SES-9109535 from the National Science Foundation, and by the Sloan Foundation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00122574", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1028241", 
        "issn": [
          "0895-5646", 
          "1573-0476"
        ], 
        "name": "Journal of Risk and Uncertainty", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Advances in prospect theory: Cumulative representation of uncertainty", 
    "pagination": "297-323", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c40a4f4c6b8b1fad9cc53ea778197a76747d0ae188c9df59bdc9793520b0b689"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00122574"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041153045"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00122574", 
      "https://app.dimensions.ai/details/publication/pub.1041153045"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130808_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00122574"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00122574'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00122574'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00122574'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00122574'


 

This table displays all metadata directly associated to this object as RDF triples.

187 TRIPLES      21 PREDICATES      62 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00122574 schema:about anzsrc-for:14
2 anzsrc-for:1402
3 schema:author N37473e84bf2a40e395ee12b7dbf112ce
4 schema:citation sg:pub.10.1007/978-1-4613-9728-1_4
5 sg:pub.10.1007/978-94-011-2952-7_9
6 sg:pub.10.1007/978-94-015-7815-8
7 sg:pub.10.1007/bf00055711
8 sg:pub.10.1007/bf00057884
9 sg:pub.10.1007/bf00057885
10 sg:pub.10.1007/bf00116783
11 sg:pub.10.1007/bf00209389
12 sg:pub.10.1007/bf02283515
13 sg:pub.10.1007/bf02283517
14 sg:pub.10.1007/bf02283529
15 https://doi.org/10.1016/0022-0531(87)90020-2
16 https://doi.org/10.1016/0022-0531(90)90022-c
17 https://doi.org/10.1016/0030-5073(80)90037-9
18 https://doi.org/10.1016/0165-4896(81)90018-4
19 https://doi.org/10.1016/0167-2681(82)90008-7
20 https://doi.org/10.1016/0304-4068(87)90022-x
21 https://doi.org/10.1016/0304-4068(89)90002-5
22 https://doi.org/10.1016/0749-5978(87)90043-4
23 https://doi.org/10.1037/0003-066x.39.4.341
24 https://doi.org/10.1037/0033-295x.95.3.371
25 https://doi.org/10.1037/h0026750
26 https://doi.org/10.1086/296365
27 https://doi.org/10.1111/j.1465-7295.1982.tb01138.x
28 https://doi.org/10.1257/jep.1.1.121
29 https://doi.org/10.1287/mnsc.36.7.780
30 https://doi.org/10.2307/1884324
31 https://doi.org/10.2307/1907264
32 https://doi.org/10.2307/1907921
33 https://doi.org/10.2307/1911053
34 https://doi.org/10.2307/1911158
35 https://doi.org/10.2307/1914185
36 https://doi.org/10.2307/2232669
37 https://doi.org/10.2307/2937956
38 https://doi.org/10.5802/aif.53
39 schema:datePublished 1992-10
40 schema:datePublishedReg 1992-10-01
41 schema:description We develop a new version of prospect theory that employs cumulative rather than separable decision weights and extends the theory in several respects. This version, called cumulative prospect theory, applies to uncertain as well as to risky prospects with any number of outcomes, and it allows different weighting functions for gains and for losses. Two principles, diminishing sensitivity and loss aversion, are invoked to explain the characteristic curvature of the value function and the weighting functions. A review of the experimental evidence and the results of a new experiment confirm a distinctive fourfold pattern of risk attitudes: risk aversion for gains and risk seeking for losses of high probability; risk seeking for gains and risk aversion for losses of low probability. This article has benefited from discussions with Colin Camerer, Chew Soo-Hong, David Freedman, and David H. Krantz. We are especially grateful to Peter P. Wakker for his invaluable input and contribution to the axiomatic analysis. We are indebted to Richard Gonzalez and Amy Hayes for running the experiment and analyzing the data. This work was supported by Grants 89-0064 and 88-0206 from the Air Force Office of Scientific Research, by Grant SES-9109535 from the National Science Foundation, and by the Sloan Foundation.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree true
45 schema:isPartOf N3dfa1307786d4188b955dbdbc5d1b4a4
46 Na3ec129fd7454e87b7ce69013b4dd344
47 sg:journal.1028241
48 schema:name Advances in prospect theory: Cumulative representation of uncertainty
49 schema:pagination 297-323
50 schema:productId N6f5d57cb467b404a91c0297a01db1e3f
51 N87dd7b5f071745a790ac5766487a1881
52 Nfe396036d607405195a766b05f6ea08c
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041153045
54 https://doi.org/10.1007/bf00122574
55 schema:sdDatePublished 2019-04-11T13:53
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N6d7fab3320a34b2db403c34050a94b02
58 schema:url http://link.springer.com/10.1007/BF00122574
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N37473e84bf2a40e395ee12b7dbf112ce rdf:first sg:person.01020177032.32
63 rdf:rest Nb85a62c99fee44e8b4a822f27f6c3112
64 N3dfa1307786d4188b955dbdbc5d1b4a4 schema:issueNumber 4
65 rdf:type schema:PublicationIssue
66 N6d7fab3320a34b2db403c34050a94b02 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N6f5d57cb467b404a91c0297a01db1e3f schema:name readcube_id
69 schema:value c40a4f4c6b8b1fad9cc53ea778197a76747d0ae188c9df59bdc9793520b0b689
70 rdf:type schema:PropertyValue
71 N87dd7b5f071745a790ac5766487a1881 schema:name doi
72 schema:value 10.1007/bf00122574
73 rdf:type schema:PropertyValue
74 Na3ec129fd7454e87b7ce69013b4dd344 schema:volumeNumber 5
75 rdf:type schema:PublicationVolume
76 Nb85a62c99fee44e8b4a822f27f6c3112 rdf:first sg:person.0103156353.62
77 rdf:rest rdf:nil
78 Nfe396036d607405195a766b05f6ea08c schema:name dimensions_id
79 schema:value pub.1041153045
80 rdf:type schema:PropertyValue
81 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
82 schema:name Economics
83 rdf:type schema:DefinedTerm
84 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
85 schema:name Applied Economics
86 rdf:type schema:DefinedTerm
87 sg:journal.1028241 schema:issn 0895-5646
88 1573-0476
89 schema:name Journal of Risk and Uncertainty
90 rdf:type schema:Periodical
91 sg:person.01020177032.32 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
92 schema:familyName Tversky
93 schema:givenName Amos
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020177032.32
95 rdf:type schema:Person
96 sg:person.0103156353.62 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
97 schema:familyName Kahneman
98 schema:givenName Daniel
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0103156353.62
100 rdf:type schema:Person
101 sg:pub.10.1007/978-1-4613-9728-1_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047783463
102 https://doi.org/10.1007/978-1-4613-9728-1_4
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/978-94-011-2952-7_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035467720
105 https://doi.org/10.1007/978-94-011-2952-7_9
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/978-94-015-7815-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023437857
108 https://doi.org/10.1007/978-94-015-7815-8
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/bf00055711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045035294
111 https://doi.org/10.1007/bf00055711
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/bf00057884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005516868
114 https://doi.org/10.1007/bf00057884
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/bf00057885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038172336
117 https://doi.org/10.1007/bf00057885
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/bf00116783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006002980
120 https://doi.org/10.1007/bf00116783
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/bf00209389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046219704
123 https://doi.org/10.1007/bf00209389
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/bf02283515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037594807
126 https://doi.org/10.1007/bf02283515
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/bf02283517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009726464
129 https://doi.org/10.1007/bf02283517
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/bf02283529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030121019
132 https://doi.org/10.1007/bf02283529
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/0022-0531(87)90020-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032657057
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/0022-0531(90)90022-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1035773743
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/0030-5073(80)90037-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023475914
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/0165-4896(81)90018-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012639305
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/0167-2681(82)90008-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026562570
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/0304-4068(87)90022-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047527043
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/0304-4068(89)90002-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020787040
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/0749-5978(87)90043-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003439845
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1037/0003-066x.39.4.341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020060348
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1037/0033-295x.95.3.371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004422782
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1037/h0026750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025426424
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1086/296365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058606191
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1111/j.1465-7295.1982.tb01138.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032958523
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1257/jep.1.1.121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064529725
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1287/mnsc.36.7.780 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064720717
163 rdf:type schema:CreativeWork
164 https://doi.org/10.2307/1884324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069625544
165 rdf:type schema:CreativeWork
166 https://doi.org/10.2307/1907264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069636752
167 rdf:type schema:CreativeWork
168 https://doi.org/10.2307/1907921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069637200
169 rdf:type schema:CreativeWork
170 https://doi.org/10.2307/1911053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069639345
171 rdf:type schema:CreativeWork
172 https://doi.org/10.2307/1911158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069639410
173 rdf:type schema:CreativeWork
174 https://doi.org/10.2307/1914185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069641248
175 rdf:type schema:CreativeWork
176 https://doi.org/10.2307/2232669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069846426
177 rdf:type schema:CreativeWork
178 https://doi.org/10.2307/2937956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070139661
179 rdf:type schema:CreativeWork
180 https://doi.org/10.5802/aif.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073139172
181 rdf:type schema:CreativeWork
182 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
183 schema:name Department of Psychology, Stanford University, 94305-2130, Stanford, CA
184 rdf:type schema:Organization
185 https://www.grid.ac/institutes/grid.47840.3f schema:alternateName University of California, Berkeley
186 schema:name Department of Psychology, University of California at Berkeley, 94720, Berkeley, CA
187 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...