Advances in prospect theory: Cumulative representation of uncertainty View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-10

AUTHORS

Amos Tversky, Daniel Kahneman

ABSTRACT

We develop a new version of prospect theory that employs cumulative rather than separable decision weights and extends the theory in several respects. This version, called cumulative prospect theory, applies to uncertain as well as to risky prospects with any number of outcomes, and it allows different weighting functions for gains and for losses. Two principles, diminishing sensitivity and loss aversion, are invoked to explain the characteristic curvature of the value function and the weighting functions. A review of the experimental evidence and the results of a new experiment confirm a distinctive fourfold pattern of risk attitudes: risk aversion for gains and risk seeking for losses of high probability; risk seeking for gains and risk aversion for losses of low probability.This article has benefited from discussions with Colin Camerer, Chew Soo-Hong, David Freedman, and David H. Krantz. We are especially grateful to Peter P. Wakker for his invaluable input and contribution to the axiomatic analysis. We are indebted to Richard Gonzalez and Amy Hayes for running the experiment and analyzing the data. This work was supported by Grants 89-0064 and 88-0206 from the Air Force Office of Scientific Research, by Grant SES-9109535 from the National Science Foundation, and by the Sloan Foundation. More... »

PAGES

297-323

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00122574

DOI

http://dx.doi.org/10.1007/bf00122574

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041153045


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Psychology, Stanford University, 94305-2130, Stanford, CA", 
          "id": "http://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Psychology, Stanford University, 94305-2130, Stanford, CA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tversky", 
        "givenName": "Amos", 
        "id": "sg:person.01020177032.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020177032.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Psychology, University of California at Berkeley, 94720, Berkeley, CA", 
          "id": "http://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Department of Psychology, University of California at Berkeley, 94720, Berkeley, CA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kahneman", 
        "givenName": "Daniel", 
        "id": "sg:person.0103156353.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0103156353.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00209389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046219704", 
          "https://doi.org/10.1007/bf00209389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00057885", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038172336", 
          "https://doi.org/10.1007/bf00057885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02283515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037594807", 
          "https://doi.org/10.1007/bf02283515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02283529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030121019", 
          "https://doi.org/10.1007/bf02283529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00055711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045035294", 
          "https://doi.org/10.1007/bf00055711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-7815-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023437857", 
          "https://doi.org/10.1007/978-94-015-7815-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00057884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005516868", 
          "https://doi.org/10.1007/bf00057884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-9728-1_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047783463", 
          "https://doi.org/10.1007/978-1-4613-9728-1_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02283517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009726464", 
          "https://doi.org/10.1007/bf02283517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-2952-7_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035467720", 
          "https://doi.org/10.1007/978-94-011-2952-7_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00116783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006002980", 
          "https://doi.org/10.1007/bf00116783"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1992-10", 
    "datePublishedReg": "1992-10-01", 
    "description": "We develop a new version of prospect theory that employs cumulative rather than separable decision weights and extends the theory in several respects. This version, called cumulative prospect theory, applies to uncertain as well as to risky prospects with any number of outcomes, and it allows different weighting functions for gains and for losses. Two principles, diminishing sensitivity and loss aversion, are invoked to explain the characteristic curvature of the value function and the weighting functions. A review of the experimental evidence and the results of a new experiment confirm a distinctive fourfold pattern of risk attitudes: risk aversion for gains and risk seeking for losses of high probability; risk seeking for gains and risk aversion for losses of low probability.This article has benefited from discussions with Colin Camerer, Chew Soo-Hong, David Freedman, and David H. Krantz. We are especially grateful to Peter P. Wakker for his invaluable input and contribution to the axiomatic analysis. We are indebted to Richard Gonzalez and Amy Hayes for running the experiment and analyzing the data. This work was supported by Grants 89-0064 and 88-0206 from the Air Force Office of Scientific Research, by Grant SES-9109535 from the National Science Foundation, and by the Sloan Foundation.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00122574", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1028241", 
        "issn": [
          "0895-5646", 
          "1573-0476"
        ], 
        "name": "Journal of Risk and Uncertainty", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "keywords": [
      "prospect theory", 
      "risk aversion", 
      "cumulative prospect theory", 
      "risky prospects", 
      "loss aversion", 
      "risk attitudes", 
      "decision weights", 
      "fourfold pattern", 
      "aversion", 
      "axiomatic analysis", 
      "cumulative representation", 
      "David Freedman", 
      "value function", 
      "Sloan Foundation", 
      "number of outcomes", 
      "weighting functions", 
      "low probability", 
      "Camerer", 
      "high probability", 
      "theory", 
      "gain", 
      "characteristic curvature", 
      "probability", 
      "uncertainty", 
      "prospects", 
      "risk", 
      "foundation", 
      "evidence", 
      "article", 
      "office", 
      "scientific research", 
      "discussion", 
      "invaluable input", 
      "input", 
      "National Science Foundation", 
      "version", 
      "contribution", 
      "research", 
      "attitudes", 
      "analysis", 
      "Gonzalez", 
      "data", 
      "Science Foundation", 
      "respect", 
      "outcomes", 
      "loss", 
      "principles", 
      "experimental evidence", 
      "Freedman", 
      "results", 
      "new version", 
      "function", 
      "patterns", 
      "number", 
      "work", 
      "Hayes", 
      "review", 
      "new experiments", 
      "advances", 
      "different weighting functions", 
      "Krantz", 
      "Air Force Office", 
      "representation", 
      "weight", 
      "sensitivity", 
      "experiments", 
      "curvature", 
      "Wakker", 
      "separable decision weights", 
      "distinctive fourfold pattern", 
      "Colin Camerer", 
      "Chew Soo-Hong", 
      "Soo-Hong", 
      "David H. Krantz", 
      "H. Krantz", 
      "Peter P. Wakker", 
      "P. Wakker", 
      "Richard Gonzalez", 
      "Amy Hayes", 
      "Grants 89", 
      "Force Office", 
      "Grant SES-9109535", 
      "SES-9109535"
    ], 
    "name": "Advances in prospect theory: Cumulative representation of uncertainty", 
    "pagination": "297-323", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041153045"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00122574"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00122574", 
      "https://app.dimensions.ai/details/publication/pub.1041153045"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T17:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_227.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00122574"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00122574'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00122574'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00122574'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00122574'


 

This table displays all metadata directly associated to this object as RDF triples.

195 TRIPLES      22 PREDICATES      119 URIs      100 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00122574 schema:about anzsrc-for:14
2 anzsrc-for:1402
3 schema:author Nbc831633b70b4f9d902c6550ff0971bf
4 schema:citation sg:pub.10.1007/978-1-4613-9728-1_4
5 sg:pub.10.1007/978-94-011-2952-7_9
6 sg:pub.10.1007/978-94-015-7815-8
7 sg:pub.10.1007/bf00055711
8 sg:pub.10.1007/bf00057884
9 sg:pub.10.1007/bf00057885
10 sg:pub.10.1007/bf00116783
11 sg:pub.10.1007/bf00209389
12 sg:pub.10.1007/bf02283515
13 sg:pub.10.1007/bf02283517
14 sg:pub.10.1007/bf02283529
15 schema:datePublished 1992-10
16 schema:datePublishedReg 1992-10-01
17 schema:description We develop a new version of prospect theory that employs cumulative rather than separable decision weights and extends the theory in several respects. This version, called cumulative prospect theory, applies to uncertain as well as to risky prospects with any number of outcomes, and it allows different weighting functions for gains and for losses. Two principles, diminishing sensitivity and loss aversion, are invoked to explain the characteristic curvature of the value function and the weighting functions. A review of the experimental evidence and the results of a new experiment confirm a distinctive fourfold pattern of risk attitudes: risk aversion for gains and risk seeking for losses of high probability; risk seeking for gains and risk aversion for losses of low probability.This article has benefited from discussions with Colin Camerer, Chew Soo-Hong, David Freedman, and David H. Krantz. We are especially grateful to Peter P. Wakker for his invaluable input and contribution to the axiomatic analysis. We are indebted to Richard Gonzalez and Amy Hayes for running the experiment and analyzing the data. This work was supported by Grants 89-0064 and 88-0206 from the Air Force Office of Scientific Research, by Grant SES-9109535 from the National Science Foundation, and by the Sloan Foundation.
18 schema:genre article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf Nbb4ca79c6f274b59b7568ac43fc7e6ec
22 Nbf91aa8900cf44cf856ad7d4d6915b0c
23 sg:journal.1028241
24 schema:keywords Air Force Office
25 Amy Hayes
26 Camerer
27 Chew Soo-Hong
28 Colin Camerer
29 David Freedman
30 David H. Krantz
31 Force Office
32 Freedman
33 Gonzalez
34 Grant SES-9109535
35 Grants 89
36 H. Krantz
37 Hayes
38 Krantz
39 National Science Foundation
40 P. Wakker
41 Peter P. Wakker
42 Richard Gonzalez
43 SES-9109535
44 Science Foundation
45 Sloan Foundation
46 Soo-Hong
47 Wakker
48 advances
49 analysis
50 article
51 attitudes
52 aversion
53 axiomatic analysis
54 characteristic curvature
55 contribution
56 cumulative prospect theory
57 cumulative representation
58 curvature
59 data
60 decision weights
61 different weighting functions
62 discussion
63 distinctive fourfold pattern
64 evidence
65 experimental evidence
66 experiments
67 foundation
68 fourfold pattern
69 function
70 gain
71 high probability
72 input
73 invaluable input
74 loss
75 loss aversion
76 low probability
77 new experiments
78 new version
79 number
80 number of outcomes
81 office
82 outcomes
83 patterns
84 principles
85 probability
86 prospect theory
87 prospects
88 representation
89 research
90 respect
91 results
92 review
93 risk
94 risk attitudes
95 risk aversion
96 risky prospects
97 scientific research
98 sensitivity
99 separable decision weights
100 theory
101 uncertainty
102 value function
103 version
104 weight
105 weighting functions
106 work
107 schema:name Advances in prospect theory: Cumulative representation of uncertainty
108 schema:pagination 297-323
109 schema:productId N32cd902be5de4078a85bff58a5688c6d
110 Nba5702f8272c464fa5a4121dc9fe29fa
111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041153045
112 https://doi.org/10.1007/bf00122574
113 schema:sdDatePublished 2021-11-01T17:58
114 schema:sdLicense https://scigraph.springernature.com/explorer/license/
115 schema:sdPublisher N579e9e7d5a654cf68b64da869fc9c6f5
116 schema:url https://doi.org/10.1007/bf00122574
117 sgo:license sg:explorer/license/
118 sgo:sdDataset articles
119 rdf:type schema:ScholarlyArticle
120 N32cd902be5de4078a85bff58a5688c6d schema:name doi
121 schema:value 10.1007/bf00122574
122 rdf:type schema:PropertyValue
123 N579e9e7d5a654cf68b64da869fc9c6f5 schema:name Springer Nature - SN SciGraph project
124 rdf:type schema:Organization
125 Nae1df67f22cd4d8193f60ffa6d593c26 rdf:first sg:person.0103156353.62
126 rdf:rest rdf:nil
127 Nba5702f8272c464fa5a4121dc9fe29fa schema:name dimensions_id
128 schema:value pub.1041153045
129 rdf:type schema:PropertyValue
130 Nbb4ca79c6f274b59b7568ac43fc7e6ec schema:volumeNumber 5
131 rdf:type schema:PublicationVolume
132 Nbc831633b70b4f9d902c6550ff0971bf rdf:first sg:person.01020177032.32
133 rdf:rest Nae1df67f22cd4d8193f60ffa6d593c26
134 Nbf91aa8900cf44cf856ad7d4d6915b0c schema:issueNumber 4
135 rdf:type schema:PublicationIssue
136 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
137 schema:name Economics
138 rdf:type schema:DefinedTerm
139 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
140 schema:name Applied Economics
141 rdf:type schema:DefinedTerm
142 sg:journal.1028241 schema:issn 0895-5646
143 1573-0476
144 schema:name Journal of Risk and Uncertainty
145 schema:publisher Springer Nature
146 rdf:type schema:Periodical
147 sg:person.01020177032.32 schema:affiliation grid-institutes:grid.168010.e
148 schema:familyName Tversky
149 schema:givenName Amos
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020177032.32
151 rdf:type schema:Person
152 sg:person.0103156353.62 schema:affiliation grid-institutes:grid.47840.3f
153 schema:familyName Kahneman
154 schema:givenName Daniel
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0103156353.62
156 rdf:type schema:Person
157 sg:pub.10.1007/978-1-4613-9728-1_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047783463
158 https://doi.org/10.1007/978-1-4613-9728-1_4
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/978-94-011-2952-7_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035467720
161 https://doi.org/10.1007/978-94-011-2952-7_9
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/978-94-015-7815-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023437857
164 https://doi.org/10.1007/978-94-015-7815-8
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/bf00055711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045035294
167 https://doi.org/10.1007/bf00055711
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/bf00057884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005516868
170 https://doi.org/10.1007/bf00057884
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/bf00057885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038172336
173 https://doi.org/10.1007/bf00057885
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/bf00116783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006002980
176 https://doi.org/10.1007/bf00116783
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/bf00209389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046219704
179 https://doi.org/10.1007/bf00209389
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/bf02283515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037594807
182 https://doi.org/10.1007/bf02283515
183 rdf:type schema:CreativeWork
184 sg:pub.10.1007/bf02283517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009726464
185 https://doi.org/10.1007/bf02283517
186 rdf:type schema:CreativeWork
187 sg:pub.10.1007/bf02283529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030121019
188 https://doi.org/10.1007/bf02283529
189 rdf:type schema:CreativeWork
190 grid-institutes:grid.168010.e schema:alternateName Department of Psychology, Stanford University, 94305-2130, Stanford, CA
191 schema:name Department of Psychology, Stanford University, 94305-2130, Stanford, CA
192 rdf:type schema:Organization
193 grid-institutes:grid.47840.3f schema:alternateName Department of Psychology, University of California at Berkeley, 94720, Berkeley, CA
194 schema:name Department of Psychology, University of California at Berkeley, 94720, Berkeley, CA
195 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...