A scheme for computing surface fluxes from mean flow observations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1979-12

AUTHORS

Martin I. Hoffert, Joel Storch

ABSTRACT

A computational scheme is developed for estimating turbulent surface stress, sensible heat flux and humidity flux from mean velocity, temperature and humidity at a single height in the atmospheric surface layer; conditions at this reference level are presumed known from observations or from a numerical atmospheric circulation model. The method is based on coupling a Monin-Obukhov similarity profile to a ‘force-restore’ formulation for the evolution of surface soil temperature to yield the local values of shear stress, heat flux and surface temperature. A self-contained formulation is presented including parameterizations for solar and infrared radiant flux at the surface.In addition to reference-level mean flow properties, the parameters needed to implement the scheme are thermal heat capacity of the soil, surface aerodynamic roughness, latitude, solar declination, surface albedo, surface emissivity and atmospheric transmissivity.Sample calculations are presented for (a), constant atmospheric forcing at the reference level, and (b) variable atmospheric forcing corresponding to Kahle's (1977) measurements of windspeed, air temperature and radiometer soil surface temperature under dry vegetatively sparse conditions in the Mohave Desert in California. The latter case simulated the observed diurnal variations resonably well for the parameters used. More... »

PAGES

429-442

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00118609

DOI

http://dx.doi.org/10.1007/bf00118609

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052200534


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Applied Science, New York University, 10003, New York, N.Y., USA", 
          "id": "http://www.grid.ac/institutes/grid.137628.9", 
          "name": [
            "Department of Applied Science, New York University, 10003, New York, N.Y., USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoffert", 
        "givenName": "Martin I.", 
        "id": "sg:person.0615753737.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615753737.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "C.S. Draper Laboratory, 02139, Cambridge, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.417533.7", 
          "name": [
            "Department of Energy and Environment, Brookhaven National Laboratory, 11973, Upton, N.Y., USA", 
            "C.S. Draper Laboratory, 02139, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Storch", 
        "givenName": "Joel", 
        "id": "sg:person.013025741452.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013025741452.81"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1979-12", 
    "datePublishedReg": "1979-12-01", 
    "description": "A computational scheme is developed for estimating turbulent surface stress, sensible heat flux and humidity flux from mean velocity, temperature and humidity at a single height in the atmospheric surface layer; conditions at this reference level are presumed known from observations or from a numerical atmospheric circulation model. The method is based on coupling a Monin-Obukhov similarity profile to a \u2018force-restore\u2019 formulation for the evolution of surface soil temperature to yield the local values of shear stress, heat flux and surface temperature. A self-contained formulation is presented including parameterizations for solar and infrared radiant flux at the surface.In addition to reference-level mean flow properties, the parameters needed to implement the scheme are thermal heat capacity of the soil, surface aerodynamic roughness, latitude, solar declination, surface albedo, surface emissivity and atmospheric transmissivity.Sample calculations are presented for (a), constant atmospheric forcing at the reference level, and (b) variable atmospheric forcing corresponding to Kahle's (1977) measurements of windspeed, air temperature and radiometer soil surface temperature under dry vegetatively sparse conditions in the Mohave Desert in California. The latter case simulated the observed diurnal variations resonably well for the parameters used.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00118609", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049385", 
        "issn": [
          "0006-8314", 
          "1573-1472"
        ], 
        "name": "Boundary-Layer Meteorology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "keywords": [
      "atmospheric forcing", 
      "surface temperature", 
      "variable atmospheric forcing", 
      "atmospheric circulation models", 
      "heat flux", 
      "sensible heat flux", 
      "surface aerodynamic roughness", 
      "atmospheric surface layer", 
      "observed diurnal variation", 
      "surface soil temperature", 
      "soil surface temperature", 
      "humidity flux", 
      "circulation model", 
      "surface fluxes", 
      "surface albedo", 
      "flow observations", 
      "atmospheric transmissivity", 
      "surface emissivity", 
      "Mohave Desert", 
      "air temperature", 
      "mean flow properties", 
      "solar declination", 
      "aerodynamic roughness", 
      "self-contained formulation", 
      "diurnal variation", 
      "soil temperature", 
      "single height", 
      "thermal heat capacity", 
      "forcing", 
      "flux", 
      "surface layer", 
      "reference levels", 
      "surface stress", 
      "flow properties", 
      "shear stress", 
      "radiant flux", 
      "mean velocity", 
      "similarity profiles", 
      "albedo", 
      "latitudes", 
      "parameterization", 
      "Desert", 
      "temperature", 
      "heat capacity", 
      "windspeed", 
      "declination", 
      "transmissivity", 
      "Sample calculations", 
      "local values", 
      "California", 
      "humidity", 
      "computational scheme", 
      "emissivity", 
      "soil", 
      "roughness", 
      "evolution", 
      "measurements", 
      "variation", 
      "scheme", 
      "parameters", 
      "formulation", 
      "stress", 
      "layer", 
      "velocity", 
      "sparse conditions", 
      "conditions", 
      "height", 
      "surface", 
      "latter case", 
      "properties", 
      "profile", 
      "model", 
      "calculations", 
      "capacity", 
      "method", 
      "values", 
      "observations", 
      "levels", 
      "addition", 
      "cases"
    ], 
    "name": "A scheme for computing surface fluxes from mean flow observations", 
    "pagination": "429-442", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052200534"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00118609"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00118609", 
      "https://app.dimensions.ai/details/publication/pub.1052200534"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_137.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00118609"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00118609'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00118609'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00118609'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00118609'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      20 PREDICATES      105 URIs      97 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00118609 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N51e4fc43198a4933bf1f3735a0298a5e
4 schema:datePublished 1979-12
5 schema:datePublishedReg 1979-12-01
6 schema:description A computational scheme is developed for estimating turbulent surface stress, sensible heat flux and humidity flux from mean velocity, temperature and humidity at a single height in the atmospheric surface layer; conditions at this reference level are presumed known from observations or from a numerical atmospheric circulation model. The method is based on coupling a Monin-Obukhov similarity profile to a ‘force-restore’ formulation for the evolution of surface soil temperature to yield the local values of shear stress, heat flux and surface temperature. A self-contained formulation is presented including parameterizations for solar and infrared radiant flux at the surface.In addition to reference-level mean flow properties, the parameters needed to implement the scheme are thermal heat capacity of the soil, surface aerodynamic roughness, latitude, solar declination, surface albedo, surface emissivity and atmospheric transmissivity.Sample calculations are presented for (a), constant atmospheric forcing at the reference level, and (b) variable atmospheric forcing corresponding to Kahle's (1977) measurements of windspeed, air temperature and radiometer soil surface temperature under dry vegetatively sparse conditions in the Mohave Desert in California. The latter case simulated the observed diurnal variations resonably well for the parameters used.
7 schema:genre article
8 schema:isAccessibleForFree false
9 schema:isPartOf N3157c3c4ca57406a92237bf39cd99f23
10 N3565a8d551be452b9dad17a645fc640b
11 sg:journal.1049385
12 schema:keywords California
13 Desert
14 Mohave Desert
15 Sample calculations
16 addition
17 aerodynamic roughness
18 air temperature
19 albedo
20 atmospheric circulation models
21 atmospheric forcing
22 atmospheric surface layer
23 atmospheric transmissivity
24 calculations
25 capacity
26 cases
27 circulation model
28 computational scheme
29 conditions
30 declination
31 diurnal variation
32 emissivity
33 evolution
34 flow observations
35 flow properties
36 flux
37 forcing
38 formulation
39 heat capacity
40 heat flux
41 height
42 humidity
43 humidity flux
44 latitudes
45 latter case
46 layer
47 levels
48 local values
49 mean flow properties
50 mean velocity
51 measurements
52 method
53 model
54 observations
55 observed diurnal variation
56 parameterization
57 parameters
58 profile
59 properties
60 radiant flux
61 reference levels
62 roughness
63 scheme
64 self-contained formulation
65 sensible heat flux
66 shear stress
67 similarity profiles
68 single height
69 soil
70 soil surface temperature
71 soil temperature
72 solar declination
73 sparse conditions
74 stress
75 surface
76 surface aerodynamic roughness
77 surface albedo
78 surface emissivity
79 surface fluxes
80 surface layer
81 surface soil temperature
82 surface stress
83 surface temperature
84 temperature
85 thermal heat capacity
86 transmissivity
87 values
88 variable atmospheric forcing
89 variation
90 velocity
91 windspeed
92 schema:name A scheme for computing surface fluxes from mean flow observations
93 schema:pagination 429-442
94 schema:productId Nd8f4d93e761d41fba91f547a072bc47a
95 Ndd48a179f97e48bcb81d28bd2a1f3db4
96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052200534
97 https://doi.org/10.1007/bf00118609
98 schema:sdDatePublished 2022-12-01T06:18
99 schema:sdLicense https://scigraph.springernature.com/explorer/license/
100 schema:sdPublisher N37e043a5114341b7b7326cf0f751d7b9
101 schema:url https://doi.org/10.1007/bf00118609
102 sgo:license sg:explorer/license/
103 sgo:sdDataset articles
104 rdf:type schema:ScholarlyArticle
105 N3157c3c4ca57406a92237bf39cd99f23 schema:volumeNumber 17
106 rdf:type schema:PublicationVolume
107 N3565a8d551be452b9dad17a645fc640b schema:issueNumber 4
108 rdf:type schema:PublicationIssue
109 N37e043a5114341b7b7326cf0f751d7b9 schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 N51e4fc43198a4933bf1f3735a0298a5e rdf:first sg:person.0615753737.63
112 rdf:rest N6e23ec8cd54c444eaffcbf4fef22d389
113 N6e23ec8cd54c444eaffcbf4fef22d389 rdf:first sg:person.013025741452.81
114 rdf:rest rdf:nil
115 Nd8f4d93e761d41fba91f547a072bc47a schema:name doi
116 schema:value 10.1007/bf00118609
117 rdf:type schema:PropertyValue
118 Ndd48a179f97e48bcb81d28bd2a1f3db4 schema:name dimensions_id
119 schema:value pub.1052200534
120 rdf:type schema:PropertyValue
121 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
122 schema:name Earth Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
125 schema:name Atmospheric Sciences
126 rdf:type schema:DefinedTerm
127 sg:journal.1049385 schema:issn 0006-8314
128 1573-1472
129 schema:name Boundary-Layer Meteorology
130 schema:publisher Springer Nature
131 rdf:type schema:Periodical
132 sg:person.013025741452.81 schema:affiliation grid-institutes:grid.417533.7
133 schema:familyName Storch
134 schema:givenName Joel
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013025741452.81
136 rdf:type schema:Person
137 sg:person.0615753737.63 schema:affiliation grid-institutes:grid.137628.9
138 schema:familyName Hoffert
139 schema:givenName Martin I.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615753737.63
141 rdf:type schema:Person
142 grid-institutes:grid.137628.9 schema:alternateName Department of Applied Science, New York University, 10003, New York, N.Y., USA
143 schema:name Department of Applied Science, New York University, 10003, New York, N.Y., USA
144 rdf:type schema:Organization
145 grid-institutes:grid.417533.7 schema:alternateName C.S. Draper Laboratory, 02139, Cambridge, MA, USA
146 schema:name C.S. Draper Laboratory, 02139, Cambridge, MA, USA
147 Department of Energy and Environment, Brookhaven National Laboratory, 11973, Upton, N.Y., USA
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...