Editorial advice to Machine Learning authors View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1990-08

ABSTRACT

N/A

PAGES

233-237

Journal

TITLE

Machine Learning

ISSUE

3

VOLUME

5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00117104

DOI

http://dx.doi.org/10.1007/bf00117104

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053054510


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "datePublished": "1990-08", 
    "datePublishedReg": "1990-08-01", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00117104", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1125588", 
        "issn": [
          "0885-6125", 
          "1573-0565"
        ], 
        "name": "Machine Learning", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Editorial advice to Machine Learning authors", 
    "pagination": "233-237", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00117104"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fcb638ddb0089661fd7d3c049cdd1e403bf9047d1c7c308e8603f15e4de6bc2b"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053054510"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00117104", 
      "https://app.dimensions.ai/details/publication/pub.1053054510"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T08:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000374_0000000374/records_119750_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00117104"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00117104'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00117104'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00117104'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00117104'


 

This table displays all metadata directly associated to this object as RDF triples.

41 TRIPLES      17 PREDICATES      23 URIs      17 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00117104 schema:datePublished 1990-08
2 schema:datePublishedReg 1990-08-01
3 schema:genre research_article
4 schema:inLanguage en
5 schema:isAccessibleForFree true
6 schema:isPartOf N1365210dfbf7464a8d108dc13ec54ab5
7 Nd90cea898ea240dfbe9704af2b57acaa
8 sg:journal.1125588
9 schema:name Editorial advice to Machine Learning authors
10 schema:pagination 233-237
11 schema:productId N542c2ae1cda645b5ab8f03e9be11e5c8
12 N66de0dec24434c839186694f6d7cf380
13 N755860bb44a14b819177f90fd7b9a86e
14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053054510
15 https://doi.org/10.1007/bf00117104
16 schema:sdDatePublished 2019-04-15T08:53
17 schema:sdLicense https://scigraph.springernature.com/explorer/license/
18 schema:sdPublisher N482278cc1c544e3f9c118660a84abbae
19 schema:url http://link.springer.com/10.1007/BF00117104
20 sgo:license sg:explorer/license/
21 sgo:sdDataset articles
22 rdf:type schema:ScholarlyArticle
23 N1365210dfbf7464a8d108dc13ec54ab5 schema:volumeNumber 5
24 rdf:type schema:PublicationVolume
25 N482278cc1c544e3f9c118660a84abbae schema:name Springer Nature - SN SciGraph project
26 rdf:type schema:Organization
27 N542c2ae1cda645b5ab8f03e9be11e5c8 schema:name doi
28 schema:value 10.1007/bf00117104
29 rdf:type schema:PropertyValue
30 N66de0dec24434c839186694f6d7cf380 schema:name dimensions_id
31 schema:value pub.1053054510
32 rdf:type schema:PropertyValue
33 N755860bb44a14b819177f90fd7b9a86e schema:name readcube_id
34 schema:value fcb638ddb0089661fd7d3c049cdd1e403bf9047d1c7c308e8603f15e4de6bc2b
35 rdf:type schema:PropertyValue
36 Nd90cea898ea240dfbe9704af2b57acaa schema:issueNumber 3
37 rdf:type schema:PublicationIssue
38 sg:journal.1125588 schema:issn 0885-6125
39 1573-0565
40 schema:name Machine Learning
41 rdf:type schema:Periodical
 




Preview window. Press ESC to close (or click here)


...