A Generalization of Abrikosov's solution of the Ginzburg-Landau equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1975-07

AUTHORS

V. G. Kogan

ABSTRACT

The Ginzburg-Landau (GL) equations for type II superconductors near the upper critical field Hc2permit a more general solution than Abrikosov's.1 It turns out that already in the first approximation it is possible to build the solution for H < Hc2.All of the basic Abrikosov results also remain correct for these expressions (Section 2). The new solutions describe the system of vortices that can form a nonperiodic structure and may contain an arbitrary number of magnetic flux quanta (Section 3). The Abrikosov structure is the particular case of the general solution (Section 3, Appendix C) in which the centers of the identical vortices form the periodic structure. The GL energy as a function of the center positions has a minimum for a periodic structure (Section 6). The validity region of these solutions is estimated. It may be wider than the similar regions for the Abrikosov case (Section 4). The simple approximate expressions for the vortex structure are obtained, and the algorithm for the higher approximations is indicated (Section 4). More... »

PAGES

103-115

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00115258

DOI

http://dx.doi.org/10.1007/bf00115258

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009666761


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics, Technion-Israel Institute of Technology, Haifa, Israel", 
          "id": "http://www.grid.ac/institutes/grid.6451.6", 
          "name": [
            "Department of Physics, Technion-Israel Institute of Technology, Haifa, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kogan", 
        "givenName": "V. G.", 
        "type": "Person"
      }
    ], 
    "datePublished": "1975-07", 
    "datePublishedReg": "1975-07-01", 
    "description": "The Ginzburg-Landau (GL) equations for type II superconductors near the upper critical field Hc2permit a more general solution than Abrikosov's.1 It turns out that already in the first approximation it is possible to build the solution for H < Hc2.All of the basic Abrikosov results also remain correct for these expressions (Section 2). The new solutions describe the system of vortices that can form a nonperiodic structure and may contain an arbitrary number of magnetic flux quanta (Section 3). The Abrikosov structure is the particular case of the general solution (Section 3, Appendix C) in which the centers of the identical vortices form the periodic structure. The GL energy as a function of the center positions has a minimum for a periodic structure (Section 6). The validity region of these solutions is estimated. It may be wider than the similar regions for the Abrikosov case (Section 4). The simple approximate expressions for the vortex structure are obtained, and the algorithm for the higher approximations is indicated (Section 4).", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00115258", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1030474", 
        "issn": [
          "0022-2291", 
          "1573-7357"
        ], 
        "name": "Journal of Low Temperature Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "keywords": [
      "Ginzburg-Landau equation", 
      "general solution", 
      "type-II superconductors", 
      "upper critical field", 
      "magnetic flux quanta", 
      "Abrikosov's solution", 
      "II superconductors", 
      "simple approximate expression", 
      "critical field", 
      "higher approximations", 
      "flux quantum", 
      "periodic structures", 
      "system of vortices", 
      "identical vortices", 
      "arbitrary number", 
      "approximate expression", 
      "validity region", 
      "particular case", 
      "vortex structures", 
      "first approximation", 
      "equations", 
      "approximation", 
      "nonperiodic structures", 
      "new solutions", 
      "vortices", 
      "solution", 
      "center position", 
      "Abrikosov", 
      "superconductors", 
      "generalization", 
      "quantum", 
      "algorithm", 
      "structure", 
      "field", 
      "minimum", 
      "cases", 
      "function", 
      "system", 
      "energy", 
      "number", 
      "results", 
      "region", 
      "position", 
      "similar regions", 
      "expression", 
      "center"
    ], 
    "name": "A Generalization of Abrikosov's solution of the Ginzburg-Landau equations", 
    "pagination": "103-115", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009666761"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00115258"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00115258", 
      "https://app.dimensions.ai/details/publication/pub.1009666761"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_134.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00115258"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00115258'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00115258'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00115258'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00115258'


 

This table displays all metadata directly associated to this object as RDF triples.

102 TRIPLES      20 PREDICATES      71 URIs      63 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00115258 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N92593a84d0bf4696a3d0c033ab4a8c8e
4 schema:datePublished 1975-07
5 schema:datePublishedReg 1975-07-01
6 schema:description The Ginzburg-Landau (GL) equations for type II superconductors near the upper critical field Hc2permit a more general solution than Abrikosov's.1 It turns out that already in the first approximation it is possible to build the solution for H < Hc2.All of the basic Abrikosov results also remain correct for these expressions (Section 2). The new solutions describe the system of vortices that can form a nonperiodic structure and may contain an arbitrary number of magnetic flux quanta (Section 3). The Abrikosov structure is the particular case of the general solution (Section 3, Appendix C) in which the centers of the identical vortices form the periodic structure. The GL energy as a function of the center positions has a minimum for a periodic structure (Section 6). The validity region of these solutions is estimated. It may be wider than the similar regions for the Abrikosov case (Section 4). The simple approximate expressions for the vortex structure are obtained, and the algorithm for the higher approximations is indicated (Section 4).
7 schema:genre article
8 schema:isAccessibleForFree false
9 schema:isPartOf N8aa1274ab3b04772957b639f68efaabd
10 Ndfd0d9928bec4b77be7085977c7f1612
11 sg:journal.1030474
12 schema:keywords Abrikosov
13 Abrikosov's solution
14 Ginzburg-Landau equation
15 II superconductors
16 algorithm
17 approximate expression
18 approximation
19 arbitrary number
20 cases
21 center
22 center position
23 critical field
24 energy
25 equations
26 expression
27 field
28 first approximation
29 flux quantum
30 function
31 general solution
32 generalization
33 higher approximations
34 identical vortices
35 magnetic flux quanta
36 minimum
37 new solutions
38 nonperiodic structures
39 number
40 particular case
41 periodic structures
42 position
43 quantum
44 region
45 results
46 similar regions
47 simple approximate expression
48 solution
49 structure
50 superconductors
51 system
52 system of vortices
53 type-II superconductors
54 upper critical field
55 validity region
56 vortex structures
57 vortices
58 schema:name A Generalization of Abrikosov's solution of the Ginzburg-Landau equations
59 schema:pagination 103-115
60 schema:productId N0a315e37a81b42478a825365e1b294c9
61 N9ce6ce2b637d4ecc8a1297d149126680
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009666761
63 https://doi.org/10.1007/bf00115258
64 schema:sdDatePublished 2022-12-01T06:18
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher Ncb7df0091e1047bb9fdaaad81d0ff8af
67 schema:url https://doi.org/10.1007/bf00115258
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N0a315e37a81b42478a825365e1b294c9 schema:name dimensions_id
72 schema:value pub.1009666761
73 rdf:type schema:PropertyValue
74 N3b078b7134134a808b5a8b2c8c32571f schema:affiliation grid-institutes:grid.6451.6
75 schema:familyName Kogan
76 schema:givenName V. G.
77 rdf:type schema:Person
78 N8aa1274ab3b04772957b639f68efaabd schema:issueNumber 1-2
79 rdf:type schema:PublicationIssue
80 N92593a84d0bf4696a3d0c033ab4a8c8e rdf:first N3b078b7134134a808b5a8b2c8c32571f
81 rdf:rest rdf:nil
82 N9ce6ce2b637d4ecc8a1297d149126680 schema:name doi
83 schema:value 10.1007/bf00115258
84 rdf:type schema:PropertyValue
85 Ncb7df0091e1047bb9fdaaad81d0ff8af schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 Ndfd0d9928bec4b77be7085977c7f1612 schema:volumeNumber 20
88 rdf:type schema:PublicationVolume
89 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
90 schema:name Mathematical Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
93 schema:name Pure Mathematics
94 rdf:type schema:DefinedTerm
95 sg:journal.1030474 schema:issn 0022-2291
96 1573-7357
97 schema:name Journal of Low Temperature Physics
98 schema:publisher Springer Nature
99 rdf:type schema:Periodical
100 grid-institutes:grid.6451.6 schema:alternateName Department of Physics, Technion-Israel Institute of Technology, Haifa, Israel
101 schema:name Department of Physics, Technion-Israel Institute of Technology, Haifa, Israel
102 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...