Genetic algorithms and Machine Learning View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00113892

DOI

http://dx.doi.org/10.1007/bf00113892

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004367785


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "citation": [
      {
        "id": "https://doi.org/10.1145/321127.321128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003232120"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1988-10", 
    "datePublishedReg": "1988-10-01", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00113892", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1125588", 
        "issn": [
          "0885-6125", 
          "1573-0565"
        ], 
        "name": "Machine Learning", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2-3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Genetic algorithms and Machine Learning", 
    "pagination": "95-99", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00113892"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "14cfeed48bb5e5b5ae28520ec168cc83151677e189b5c2b359baaff7ee319e52"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004367785"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00113892", 
      "https://app.dimensions.ai/details/publication/pub.1004367785"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T08:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000374_0000000374/records_119754_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00113892"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00113892'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00113892'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00113892'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00113892'


 

This table displays all metadata directly associated to this object as RDF triples.

44 TRIPLES      18 PREDICATES      24 URIs      17 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00113892 schema:citation https://doi.org/10.1145/321127.321128
2 schema:datePublished 1988-10
3 schema:datePublishedReg 1988-10-01
4 schema:genre research_article
5 schema:inLanguage en
6 schema:isAccessibleForFree true
7 schema:isPartOf N7fe76355377b4e1bb7e386f0c9e27fe3
8 Nb77a7176ed364fd2acbe5bc651043bc9
9 sg:journal.1125588
10 schema:name Genetic algorithms and Machine Learning
11 schema:pagination 95-99
12 schema:productId N01587851d36d4a97be00e4aa6a70ab6e
13 Nb084342aa32241499666fe21e049ba57
14 Nf288ad9ee1f04de1b7c929855bcb32a8
15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004367785
16 https://doi.org/10.1007/bf00113892
17 schema:sdDatePublished 2019-04-15T08:54
18 schema:sdLicense https://scigraph.springernature.com/explorer/license/
19 schema:sdPublisher N2e3668ca40624c0c9094de92a53382a2
20 schema:url http://link.springer.com/10.1007/BF00113892
21 sgo:license sg:explorer/license/
22 sgo:sdDataset articles
23 rdf:type schema:ScholarlyArticle
24 N01587851d36d4a97be00e4aa6a70ab6e schema:name dimensions_id
25 schema:value pub.1004367785
26 rdf:type schema:PropertyValue
27 N2e3668ca40624c0c9094de92a53382a2 schema:name Springer Nature - SN SciGraph project
28 rdf:type schema:Organization
29 N7fe76355377b4e1bb7e386f0c9e27fe3 schema:issueNumber 2-3
30 rdf:type schema:PublicationIssue
31 Nb084342aa32241499666fe21e049ba57 schema:name readcube_id
32 schema:value 14cfeed48bb5e5b5ae28520ec168cc83151677e189b5c2b359baaff7ee319e52
33 rdf:type schema:PropertyValue
34 Nb77a7176ed364fd2acbe5bc651043bc9 schema:volumeNumber 3
35 rdf:type schema:PublicationVolume
36 Nf288ad9ee1f04de1b7c929855bcb32a8 schema:name doi
37 schema:value 10.1007/bf00113892
38 rdf:type schema:PropertyValue
39 sg:journal.1125588 schema:issn 0885-6125
40 1573-0565
41 schema:name Machine Learning
42 rdf:type schema:Periodical
43 https://doi.org/10.1145/321127.321128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003232120
44 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...