Machine learning, 1986, volume I View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1987-03

ABSTRACT

N/A

PAGES

iii-iii

Journal

TITLE

Machine Learning

ISSUE

1

VOLUME

2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00058756

DOI

http://dx.doi.org/10.1007/bf00058756

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044824337


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "datePublished": "1987-03", 
    "datePublishedReg": "1987-03-01", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1007/bf00058756", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1125588", 
        "issn": [
          "0885-6125", 
          "1573-0565"
        ], 
        "name": "Machine Learning", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "name": "Machine learning, 1986, volume I", 
    "pagination": "iii-iii", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00058756"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d5834c581b5534c722b6d0fdd2a8c94988d633cafdf3f9e4874604ca328bc6fc"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044824337"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00058756", 
      "https://app.dimensions.ai/details/publication/pub.1044824337"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T08:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000374_0000000374/records_119714_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00058756"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00058756'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00058756'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00058756'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00058756'


 

This table displays all metadata directly associated to this object as RDF triples.

41 TRIPLES      17 PREDICATES      23 URIs      17 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00058756 schema:datePublished 1987-03
2 schema:datePublishedReg 1987-03-01
3 schema:genre non_research_article
4 schema:inLanguage en
5 schema:isAccessibleForFree true
6 schema:isPartOf N371bb2a996954e788e37a7fa4ecd1eb3
7 N6b2a4df53c434790b6308d4032bbbc30
8 sg:journal.1125588
9 schema:name Machine learning, 1986, volume I
10 schema:pagination iii-iii
11 schema:productId N27c3eae9ce834c42bcbdc665d03fb195
12 N6943da7aaca04caab78e6aa81f96b410
13 Nacd45570c6d243b88a99e2449018c1a4
14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044824337
15 https://doi.org/10.1007/bf00058756
16 schema:sdDatePublished 2019-04-15T08:48
17 schema:sdLicense https://scigraph.springernature.com/explorer/license/
18 schema:sdPublisher N1371a3d651134b88bf736da5bd5fef4d
19 schema:url http://link.springer.com/10.1007/BF00058756
20 sgo:license sg:explorer/license/
21 sgo:sdDataset articles
22 rdf:type schema:ScholarlyArticle
23 N1371a3d651134b88bf736da5bd5fef4d schema:name Springer Nature - SN SciGraph project
24 rdf:type schema:Organization
25 N27c3eae9ce834c42bcbdc665d03fb195 schema:name readcube_id
26 schema:value d5834c581b5534c722b6d0fdd2a8c94988d633cafdf3f9e4874604ca328bc6fc
27 rdf:type schema:PropertyValue
28 N371bb2a996954e788e37a7fa4ecd1eb3 schema:issueNumber 1
29 rdf:type schema:PublicationIssue
30 N6943da7aaca04caab78e6aa81f96b410 schema:name dimensions_id
31 schema:value pub.1044824337
32 rdf:type schema:PropertyValue
33 N6b2a4df53c434790b6308d4032bbbc30 schema:volumeNumber 2
34 rdf:type schema:PublicationVolume
35 Nacd45570c6d243b88a99e2449018c1a4 schema:name doi
36 schema:value 10.1007/bf00058756
37 rdf:type schema:PropertyValue
38 sg:journal.1125588 schema:issn 0885-6125
39 1573-0565
40 schema:name Machine Learning
41 rdf:type schema:Periodical
 




Preview window. Press ESC to close (or click here)


...