Bagging predictors View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1996-08

AUTHORS

Leo Breiman

ABSTRACT

Bagging predictors is a method for generating multiple versions of a predictor and using these to get an aggregated predictor. The aggregation averages over the versions when predicting a numerical outcome and does a plurality vote when predicting a class. The multiple versions are formed by making bootstrap replicates of the learning set and using these as new learning sets. Tests on real and simulated data sets using classification and regression trees and subset selection in linear regression show that bagging can give substantial gains in accuracy. The vital element is the instability of the prediction method. If perturbing the learning set can cause significant changes in the predictor constructed, then bagging can improve accuracy. More... »

PAGES

123-140

References to SciGraph publications

  • 1993. Learning classification trees in ARTIFICIAL INTELLIGENCE FRONTIERS IN STATISTICS
  • 1993. An Introduction to the Bootstrap in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf00058655

    DOI

    http://dx.doi.org/10.1007/bf00058655

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1002929950


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of California, Berkeley", 
              "id": "https://www.grid.ac/institutes/grid.47840.3f", 
              "name": [
                "Statistics Department, University of California, 94720, Berkeley, CA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Breiman", 
            "givenName": "Leo", 
            "id": "sg:person.01275565034.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275565034.02"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/b978-0-444-88650-7.50030-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037480404"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.87.23.9193", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044205330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aos/1176347963", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045549108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1985.10478157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058303134"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1403680", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069473952"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4899-4537-2_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089746414", 
              "https://doi.org/10.1007/978-1-4899-4537-2_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/0471725153", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109700913"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/0471725153", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109700913"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1109705929", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4899-4541-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109705929", 
              "https://doi.org/10.1007/978-1-4899-4541-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4899-4541-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109705929", 
              "https://doi.org/10.1007/978-1-4899-4541-9"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1996-08", 
        "datePublishedReg": "1996-08-01", 
        "description": "Bagging predictors is a method for generating multiple versions of a predictor and using these to get an aggregated predictor. The aggregation averages over the versions when predicting a numerical outcome and does a plurality vote when predicting a class. The multiple versions are formed by making bootstrap replicates of the learning set and using these as new learning sets. Tests on real and simulated data sets using classification and regression trees and subset selection in linear regression show that bagging can give substantial gains in accuracy. The vital element is the instability of the prediction method. If perturbing the learning set can cause significant changes in the predictor constructed, then bagging can improve accuracy.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf00058655", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1125588", 
            "issn": [
              "0885-6125", 
              "1573-0565"
            ], 
            "name": "Machine Learning", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "24"
          }
        ], 
        "name": "Bagging predictors", 
        "pagination": "123-140", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf00058655"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "0df45a73282c1c98a576bae95d50df4ebcdda05594e10e00541e30392b93b6a3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1002929950"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf00058655", 
          "https://app.dimensions.ai/details/publication/pub.1002929950"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-15T08:50", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000374_0000000374/records_119730_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF00058655"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00058655'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00058655'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00058655'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00058655'


     

    This table displays all metadata directly associated to this object as RDF triples.

    89 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf00058655 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N7df0d63f3f9b4762b57a2ac648c4649e
    4 schema:citation sg:pub.10.1007/978-1-4899-4537-2_15
    5 sg:pub.10.1007/978-1-4899-4541-9
    6 https://app.dimensions.ai/details/publication/pub.1109705929
    7 https://doi.org/10.1002/0471725153
    8 https://doi.org/10.1016/b978-0-444-88650-7.50030-5
    9 https://doi.org/10.1073/pnas.87.23.9193
    10 https://doi.org/10.1080/01621459.1985.10478157
    11 https://doi.org/10.1214/aos/1176347963
    12 https://doi.org/10.2307/1403680
    13 schema:datePublished 1996-08
    14 schema:datePublishedReg 1996-08-01
    15 schema:description Bagging predictors is a method for generating multiple versions of a predictor and using these to get an aggregated predictor. The aggregation averages over the versions when predicting a numerical outcome and does a plurality vote when predicting a class. The multiple versions are formed by making bootstrap replicates of the learning set and using these as new learning sets. Tests on real and simulated data sets using classification and regression trees and subset selection in linear regression show that bagging can give substantial gains in accuracy. The vital element is the instability of the prediction method. If perturbing the learning set can cause significant changes in the predictor constructed, then bagging can improve accuracy.
    16 schema:genre research_article
    17 schema:inLanguage en
    18 schema:isAccessibleForFree true
    19 schema:isPartOf Nd6ea7fd172f441c2bc3cf1626e409eb6
    20 Nd79224de8dcf4e7389f9c27321fd1c44
    21 sg:journal.1125588
    22 schema:name Bagging predictors
    23 schema:pagination 123-140
    24 schema:productId N1aee10fb3d4d49a087b4046b8bf767c5
    25 N3be0338a537247228b9ebafc8da57ca8
    26 Nb610365334e8415e9fd211b4791591c9
    27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002929950
    28 https://doi.org/10.1007/bf00058655
    29 schema:sdDatePublished 2019-04-15T08:50
    30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    31 schema:sdPublisher N59efbd9e89ff42eca364536aecf9fdf8
    32 schema:url http://link.springer.com/10.1007/BF00058655
    33 sgo:license sg:explorer/license/
    34 sgo:sdDataset articles
    35 rdf:type schema:ScholarlyArticle
    36 N1aee10fb3d4d49a087b4046b8bf767c5 schema:name dimensions_id
    37 schema:value pub.1002929950
    38 rdf:type schema:PropertyValue
    39 N3be0338a537247228b9ebafc8da57ca8 schema:name doi
    40 schema:value 10.1007/bf00058655
    41 rdf:type schema:PropertyValue
    42 N59efbd9e89ff42eca364536aecf9fdf8 schema:name Springer Nature - SN SciGraph project
    43 rdf:type schema:Organization
    44 N7df0d63f3f9b4762b57a2ac648c4649e rdf:first sg:person.01275565034.02
    45 rdf:rest rdf:nil
    46 Nb610365334e8415e9fd211b4791591c9 schema:name readcube_id
    47 schema:value 0df45a73282c1c98a576bae95d50df4ebcdda05594e10e00541e30392b93b6a3
    48 rdf:type schema:PropertyValue
    49 Nd6ea7fd172f441c2bc3cf1626e409eb6 schema:volumeNumber 24
    50 rdf:type schema:PublicationVolume
    51 Nd79224de8dcf4e7389f9c27321fd1c44 schema:issueNumber 2
    52 rdf:type schema:PublicationIssue
    53 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    54 schema:name Information and Computing Sciences
    55 rdf:type schema:DefinedTerm
    56 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    57 schema:name Artificial Intelligence and Image Processing
    58 rdf:type schema:DefinedTerm
    59 sg:journal.1125588 schema:issn 0885-6125
    60 1573-0565
    61 schema:name Machine Learning
    62 rdf:type schema:Periodical
    63 sg:person.01275565034.02 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
    64 schema:familyName Breiman
    65 schema:givenName Leo
    66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275565034.02
    67 rdf:type schema:Person
    68 sg:pub.10.1007/978-1-4899-4537-2_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089746414
    69 https://doi.org/10.1007/978-1-4899-4537-2_15
    70 rdf:type schema:CreativeWork
    71 sg:pub.10.1007/978-1-4899-4541-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705929
    72 https://doi.org/10.1007/978-1-4899-4541-9
    73 rdf:type schema:CreativeWork
    74 https://app.dimensions.ai/details/publication/pub.1109705929 schema:CreativeWork
    75 https://doi.org/10.1002/0471725153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109700913
    76 rdf:type schema:CreativeWork
    77 https://doi.org/10.1016/b978-0-444-88650-7.50030-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037480404
    78 rdf:type schema:CreativeWork
    79 https://doi.org/10.1073/pnas.87.23.9193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044205330
    80 rdf:type schema:CreativeWork
    81 https://doi.org/10.1080/01621459.1985.10478157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058303134
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1214/aos/1176347963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045549108
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.2307/1403680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069473952
    86 rdf:type schema:CreativeWork
    87 https://www.grid.ac/institutes/grid.47840.3f schema:alternateName University of California, Berkeley
    88 schema:name Statistics Department, University of California, 94720, Berkeley, CA
    89 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...