1996-08
AUTHORS ABSTRACTBagging predictors is a method for generating multiple versions of a predictor and using these to get an aggregated predictor. The aggregation averages over the versions when predicting a numerical outcome and does a plurality vote when predicting a class. The multiple versions are formed by making bootstrap replicates of the learning set and using these as new learning sets. Tests on real and simulated data sets using classification and regression trees and subset selection in linear regression show that bagging can give substantial gains in accuracy. The vital element is the instability of the prediction method. If perturbing the learning set can cause significant changes in the predictor constructed, then bagging can improve accuracy. More... »
PAGES123-140
http://scigraph.springernature.com/pub.10.1007/bf00058655
DOIhttp://dx.doi.org/10.1007/bf00058655
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1002929950
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Statistics Department, University of California, 94720, Berkeley, CA",
"id": "http://www.grid.ac/institutes/grid.47840.3f",
"name": [
"Statistics Department, University of California, 94720, Berkeley, CA"
],
"type": "Organization"
},
"familyName": "Breiman",
"givenName": "Leo",
"id": "sg:person.01275565034.02",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275565034.02"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-1-4899-4537-2_15",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1089746414",
"https://doi.org/10.1007/978-1-4899-4537-2_15"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4899-4541-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1109705929",
"https://doi.org/10.1007/978-1-4899-4541-9"
],
"type": "CreativeWork"
}
],
"datePublished": "1996-08",
"datePublishedReg": "1996-08-01",
"description": "Bagging predictors is a method for generating multiple versions of a predictor and using these to get an aggregated predictor. The aggregation averages over the versions when predicting a numerical outcome and does a plurality vote when predicting a class. The multiple versions are formed by making bootstrap replicates of the learning set and using these as new learning sets. Tests on real and simulated data sets using classification and regression trees and subset selection in linear regression show that bagging can give substantial gains in accuracy. The vital element is the instability of the prediction method. If perturbing the learning set can cause significant changes in the predictor constructed, then bagging can improve accuracy.",
"genre": "article",
"id": "sg:pub.10.1007/bf00058655",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1125588",
"issn": [
"0885-6125",
"1573-0565"
],
"name": "Machine Learning",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "24"
}
],
"keywords": [
"multiple versions",
"bagging predictors",
"learning set",
"subset selection",
"simulated data sets",
"data sets",
"regression trees",
"new learning sets",
"bagging",
"prediction method",
"set",
"substantial gains",
"plurality vote",
"accuracy",
"version",
"learning",
"classification",
"vital element",
"method",
"trees",
"selection",
"vote",
"linear regression",
"class",
"bootstrap replicates",
"gain",
"elements",
"regression",
"numerical outcomes",
"average",
"test",
"predictors",
"changes",
"outcomes",
"instability",
"significant changes",
"replicates"
],
"name": "Bagging predictors",
"pagination": "123-140",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1002929950"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf00058655"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf00058655",
"https://app.dimensions.ai/details/publication/pub.1002929950"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:20",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_286.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/bf00058655"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00058655'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00058655'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00058655'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00058655'
This table displays all metadata directly associated to this object as RDF triples.
103 TRIPLES
22 PREDICATES
65 URIs
55 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/bf00058655 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0801 |
3 | ″ | schema:author | N1660a4f3e5ff4ffeba15ed79684faf61 |
4 | ″ | schema:citation | sg:pub.10.1007/978-1-4899-4537-2_15 |
5 | ″ | ″ | sg:pub.10.1007/978-1-4899-4541-9 |
6 | ″ | schema:datePublished | 1996-08 |
7 | ″ | schema:datePublishedReg | 1996-08-01 |
8 | ″ | schema:description | Bagging predictors is a method for generating multiple versions of a predictor and using these to get an aggregated predictor. The aggregation averages over the versions when predicting a numerical outcome and does a plurality vote when predicting a class. The multiple versions are formed by making bootstrap replicates of the learning set and using these as new learning sets. Tests on real and simulated data sets using classification and regression trees and subset selection in linear regression show that bagging can give substantial gains in accuracy. The vital element is the instability of the prediction method. If perturbing the learning set can cause significant changes in the predictor constructed, then bagging can improve accuracy. |
9 | ″ | schema:genre | article |
10 | ″ | schema:inLanguage | en |
11 | ″ | schema:isAccessibleForFree | true |
12 | ″ | schema:isPartOf | N618fd9ad02844f8a978b5c7320550645 |
13 | ″ | ″ | N6bf4d5e331684dd48ac35aa46c2f9b8a |
14 | ″ | ″ | sg:journal.1125588 |
15 | ″ | schema:keywords | accuracy |
16 | ″ | ″ | average |
17 | ″ | ″ | bagging |
18 | ″ | ″ | bagging predictors |
19 | ″ | ″ | bootstrap replicates |
20 | ″ | ″ | changes |
21 | ″ | ″ | class |
22 | ″ | ″ | classification |
23 | ″ | ″ | data sets |
24 | ″ | ″ | elements |
25 | ″ | ″ | gain |
26 | ″ | ″ | instability |
27 | ″ | ″ | learning |
28 | ″ | ″ | learning set |
29 | ″ | ″ | linear regression |
30 | ″ | ″ | method |
31 | ″ | ″ | multiple versions |
32 | ″ | ″ | new learning sets |
33 | ″ | ″ | numerical outcomes |
34 | ″ | ″ | outcomes |
35 | ″ | ″ | plurality vote |
36 | ″ | ″ | prediction method |
37 | ″ | ″ | predictors |
38 | ″ | ″ | regression |
39 | ″ | ″ | regression trees |
40 | ″ | ″ | replicates |
41 | ″ | ″ | selection |
42 | ″ | ″ | set |
43 | ″ | ″ | significant changes |
44 | ″ | ″ | simulated data sets |
45 | ″ | ″ | subset selection |
46 | ″ | ″ | substantial gains |
47 | ″ | ″ | test |
48 | ″ | ″ | trees |
49 | ″ | ″ | version |
50 | ″ | ″ | vital element |
51 | ″ | ″ | vote |
52 | ″ | schema:name | Bagging predictors |
53 | ″ | schema:pagination | 123-140 |
54 | ″ | schema:productId | N666ee9c56fdd4f23afdfbdf7fbc68dbb |
55 | ″ | ″ | Nb594fdaa991645b08ab783d010bb0fac |
56 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1002929950 |
57 | ″ | ″ | https://doi.org/10.1007/bf00058655 |
58 | ″ | schema:sdDatePublished | 2022-05-20T07:20 |
59 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
60 | ″ | schema:sdPublisher | N96283e70afc040788ec64055baac9bb2 |
61 | ″ | schema:url | https://doi.org/10.1007/bf00058655 |
62 | ″ | sgo:license | sg:explorer/license/ |
63 | ″ | sgo:sdDataset | articles |
64 | ″ | rdf:type | schema:ScholarlyArticle |
65 | N1660a4f3e5ff4ffeba15ed79684faf61 | rdf:first | sg:person.01275565034.02 |
66 | ″ | rdf:rest | rdf:nil |
67 | N618fd9ad02844f8a978b5c7320550645 | schema:volumeNumber | 24 |
68 | ″ | rdf:type | schema:PublicationVolume |
69 | N666ee9c56fdd4f23afdfbdf7fbc68dbb | schema:name | doi |
70 | ″ | schema:value | 10.1007/bf00058655 |
71 | ″ | rdf:type | schema:PropertyValue |
72 | N6bf4d5e331684dd48ac35aa46c2f9b8a | schema:issueNumber | 2 |
73 | ″ | rdf:type | schema:PublicationIssue |
74 | N96283e70afc040788ec64055baac9bb2 | schema:name | Springer Nature - SN SciGraph project |
75 | ″ | rdf:type | schema:Organization |
76 | Nb594fdaa991645b08ab783d010bb0fac | schema:name | dimensions_id |
77 | ″ | schema:value | pub.1002929950 |
78 | ″ | rdf:type | schema:PropertyValue |
79 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
80 | ″ | schema:name | Information and Computing Sciences |
81 | ″ | rdf:type | schema:DefinedTerm |
82 | anzsrc-for:0801 | schema:inDefinedTermSet | anzsrc-for: |
83 | ″ | schema:name | Artificial Intelligence and Image Processing |
84 | ″ | rdf:type | schema:DefinedTerm |
85 | sg:journal.1125588 | schema:issn | 0885-6125 |
86 | ″ | ″ | 1573-0565 |
87 | ″ | schema:name | Machine Learning |
88 | ″ | schema:publisher | Springer Nature |
89 | ″ | rdf:type | schema:Periodical |
90 | sg:person.01275565034.02 | schema:affiliation | grid-institutes:grid.47840.3f |
91 | ″ | schema:familyName | Breiman |
92 | ″ | schema:givenName | Leo |
93 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275565034.02 |
94 | ″ | rdf:type | schema:Person |
95 | sg:pub.10.1007/978-1-4899-4537-2_15 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1089746414 |
96 | ″ | ″ | https://doi.org/10.1007/978-1-4899-4537-2_15 |
97 | ″ | rdf:type | schema:CreativeWork |
98 | sg:pub.10.1007/978-1-4899-4541-9 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1109705929 |
99 | ″ | ″ | https://doi.org/10.1007/978-1-4899-4541-9 |
100 | ″ | rdf:type | schema:CreativeWork |
101 | grid-institutes:grid.47840.3f | schema:alternateName | Statistics Department, University of California, 94720, Berkeley, CA |
102 | ″ | schema:name | Statistics Department, University of California, 94720, Berkeley, CA |
103 | ″ | rdf:type | schema:Organization |