A class of consistent tests for exponentiality based on the empirical Laplace transform View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1991-09

AUTHORS

Ludwig Baringhaus, Norbert Henze

ABSTRACT

The Laplace transform ψ(t=E[exp(−tX)]) of a random variable with exponential density λ exp(−λx), x≥0, satisfies the differential equation (λ+t)ψ′(t)+ψ(t=0, t≥0). We study the behaviour of a class of consistent (“omnibus”) tests for exponentiality based on a suitably weighted integral of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l% b9peea0lb9sq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9pue9Fve9% Ffc8meGabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGBbGaaiikai% qbeU7aSzaajaWaaSbaaSqaaGqaciaa-5gaaeqaaOGaey4kaSIaamiD% aiaacMcacqaHipqEcaWFNaWaaSbaaSqaaiaad6gaaeqaaOGaaiikai% aadshacaGGPaGaey4kaSIaeqiYdK3aaSbaaSqaaiaad6gaaeqaaOGa% aiikaiaadshacaGGPaGaaiyxamaaCaaaleqabaGaaGOmaaaaaaa!4C69!\[[(\hat \lambda _n + t)\psi '_n (t) + \psi _n (t)]^2 \], where % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l% b9peea0lb9sq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9pue9Fve9% Ffc8meGabaqaciGacaGaaeqabaWaaeaaeaaakeaacuaH7oaBgaqcam% aaBaaaleaaieGacaWFUbaabeaaaaa!3A66!\[\hat \lambda _n \] is the maximum-likelihood-estimate of λ and ψn is the empirical Laplace transform, each based on an i.i.d. sample X1,...,Xn. More... »

PAGES

551-564

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00053372

DOI

http://dx.doi.org/10.1007/bf00053372

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003608167


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Hannover", 
          "id": "https://www.grid.ac/institutes/grid.9122.8", 
          "name": [
            "Institut f\u00fcr Mathematische Stochastik, Universit\u00e4t Hannover, Welfengarten 1, D-3000, Hannover 1, FRG"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baringhaus", 
        "givenName": "Ludwig", 
        "id": "sg:person.0772402011.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772402011.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hannover", 
          "id": "https://www.grid.ac/institutes/grid.9122.8", 
          "name": [
            "Institut f\u00fcr Mathematische Stochastik, Universit\u00e4t Hannover, Welfengarten 1, D-3000, Hannover 1, FRG"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Henze", 
        "givenName": "Norbert", 
        "id": "sg:person.013656404003.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013656404003.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/00401706.1972.10488921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058284410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00401706.1978.10489614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058285045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1972.10481231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058300879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03610928408828782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058333244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03610928808829829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058334291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/44.1-2.253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059416626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/62.2.445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059418449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176350274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064409113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2347751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101983207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2347751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101983207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470316481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109489382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109489382", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1991-09", 
    "datePublishedReg": "1991-09-01", 
    "description": "The Laplace transform \u03c8(t=E[exp(\u2212tX)]) of a random variable with exponential density \u03bb exp(\u2212\u03bbx), x\u22650, satisfies the differential equation (\u03bb+t)\u03c8\u2032(t)+\u03c8(t=0, t\u22650). We study the behaviour of a class of consistent (\u201comnibus\u201d) tests for exponentiality based on a suitably weighted integral of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l% b9peea0lb9sq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9pue9Fve9% Ffc8meGabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGBbGaaiikai% qbeU7aSzaajaWaaSbaaSqaaGqaciaa-5gaaeqaaOGaey4kaSIaamiD% aiaacMcacqaHipqEcaWFNaWaaSbaaSqaaiaad6gaaeqaaOGaaiikai% aadshacaGGPaGaey4kaSIaeqiYdK3aaSbaaSqaaiaad6gaaeqaaOGa% aiikaiaadshacaGGPaGaaiyxamaaCaaaleqabaGaaGOmaaaaaaa!4C69!\\[[(\\hat \\lambda _n + t)\\psi '_n (t) + \\psi _n (t)]^2 \\], where % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l% b9peea0lb9sq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9pue9Fve9% Ffc8meGabaqaciGacaGaaeqabaWaaeaaeaaakeaacuaH7oaBgaqcam% aaBaaaleaaieGacaWFUbaabeaaaaa!3A66!\\[\\hat \\lambda _n \\] is the maximum-likelihood-estimate of \u03bb and \u03c8n is the empirical Laplace transform, each based on an i.i.d. sample X1,...,Xn.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00053372", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1041657", 
        "issn": [
          "0020-3157", 
          "1572-9052"
        ], 
        "name": "Annals of the Institute of Statistical Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "43"
      }
    ], 
    "name": "A class of consistent tests for exponentiality based on the empirical Laplace transform", 
    "pagination": "551-564", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1130370744a68bf2307f8090e15651650a74059e48c664b17708858655164cf4"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00053372"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003608167"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00053372", 
      "https://app.dimensions.ai/details/publication/pub.1003608167"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130794_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00053372"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00053372'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00053372'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00053372'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00053372'


 

This table displays all metadata directly associated to this object as RDF triples.

100 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00053372 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Ne6ddfd796083457c948716357a45dd77
4 schema:citation https://app.dimensions.ai/details/publication/pub.1109489382
5 https://doi.org/10.1002/9780470316481
6 https://doi.org/10.1080/00401706.1972.10488921
7 https://doi.org/10.1080/00401706.1978.10489614
8 https://doi.org/10.1080/01621459.1972.10481231
9 https://doi.org/10.1080/03610928408828782
10 https://doi.org/10.1080/03610928808829829
11 https://doi.org/10.1093/biomet/44.1-2.253
12 https://doi.org/10.1093/biomet/62.2.445
13 https://doi.org/10.1214/aos/1176350274
14 https://doi.org/10.2307/2347751
15 schema:datePublished 1991-09
16 schema:datePublishedReg 1991-09-01
17 schema:description The Laplace transform ψ(t=E[exp(−tX)]) of a random variable with exponential density λ exp(−λx), x≥0, satisfies the differential equation (λ+t)ψ′(t)+ψ(t=0, t≥0). We study the behaviour of a class of consistent (“omnibus”) tests for exponentiality based on a suitably weighted integral of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l% b9peea0lb9sq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9pue9Fve9% Ffc8meGabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGBbGaaiikai% qbeU7aSzaajaWaaSbaaSqaaGqaciaa-5gaaeqaaOGaey4kaSIaamiD% aiaacMcacqaHipqEcaWFNaWaaSbaaSqaaiaad6gaaeqaaOGaaiikai% aadshacaGGPaGaey4kaSIaeqiYdK3aaSbaaSqaaiaad6gaaeqaaOGa% aiikaiaadshacaGGPaGaaiyxamaaCaaaleqabaGaaGOmaaaaaaa!4C69!\[[(\hat \lambda _n + t)\psi '_n (t) + \psi _n (t)]^2 \], where % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l% b9peea0lb9sq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9pue9Fve9% Ffc8meGabaqaciGacaGaaeqabaWaaeaaeaaakeaacuaH7oaBgaqcam% aaBaaaleaaieGacaWFUbaabeaaaaa!3A66!\[\hat \lambda _n \] is the maximum-likelihood-estimate of λ and ψn is the empirical Laplace transform, each based on an i.i.d. sample X1,...,Xn.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree true
21 schema:isPartOf N736a7631753c4fef89136d9330d7a376
22 Neeccbb64fabd46bf9d8139e703052885
23 sg:journal.1041657
24 schema:name A class of consistent tests for exponentiality based on the empirical Laplace transform
25 schema:pagination 551-564
26 schema:productId N29d958acb557492cbfdfdda4c61a76d7
27 N39ed3e40971f445ca32e2ab3be9ac0be
28 N4e310cdd4bfc46238905d94eea69525f
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003608167
30 https://doi.org/10.1007/bf00053372
31 schema:sdDatePublished 2019-04-11T13:49
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N204f22a3a63c4d6d966669965d32c0cd
34 schema:url http://link.springer.com/10.1007/BF00053372
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N204f22a3a63c4d6d966669965d32c0cd schema:name Springer Nature - SN SciGraph project
39 rdf:type schema:Organization
40 N29d958acb557492cbfdfdda4c61a76d7 schema:name readcube_id
41 schema:value 1130370744a68bf2307f8090e15651650a74059e48c664b17708858655164cf4
42 rdf:type schema:PropertyValue
43 N39ed3e40971f445ca32e2ab3be9ac0be schema:name doi
44 schema:value 10.1007/bf00053372
45 rdf:type schema:PropertyValue
46 N4e310cdd4bfc46238905d94eea69525f schema:name dimensions_id
47 schema:value pub.1003608167
48 rdf:type schema:PropertyValue
49 N736a7631753c4fef89136d9330d7a376 schema:issueNumber 3
50 rdf:type schema:PublicationIssue
51 Ne6ddfd796083457c948716357a45dd77 rdf:first sg:person.0772402011.84
52 rdf:rest Nf3780cf1ecd942b280737a986a096482
53 Neeccbb64fabd46bf9d8139e703052885 schema:volumeNumber 43
54 rdf:type schema:PublicationVolume
55 Nf3780cf1ecd942b280737a986a096482 rdf:first sg:person.013656404003.08
56 rdf:rest rdf:nil
57 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
58 schema:name Mathematical Sciences
59 rdf:type schema:DefinedTerm
60 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
61 schema:name Statistics
62 rdf:type schema:DefinedTerm
63 sg:journal.1041657 schema:issn 0020-3157
64 1572-9052
65 schema:name Annals of the Institute of Statistical Mathematics
66 rdf:type schema:Periodical
67 sg:person.013656404003.08 schema:affiliation https://www.grid.ac/institutes/grid.9122.8
68 schema:familyName Henze
69 schema:givenName Norbert
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013656404003.08
71 rdf:type schema:Person
72 sg:person.0772402011.84 schema:affiliation https://www.grid.ac/institutes/grid.9122.8
73 schema:familyName Baringhaus
74 schema:givenName Ludwig
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772402011.84
76 rdf:type schema:Person
77 https://app.dimensions.ai/details/publication/pub.1109489382 schema:CreativeWork
78 https://doi.org/10.1002/9780470316481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109489382
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1080/00401706.1972.10488921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058284410
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1080/00401706.1978.10489614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058285045
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1080/01621459.1972.10481231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058300879
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1080/03610928408828782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058333244
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1080/03610928808829829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058334291
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1093/biomet/44.1-2.253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059416626
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1093/biomet/62.2.445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059418449
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1214/aos/1176350274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064409113
95 rdf:type schema:CreativeWork
96 https://doi.org/10.2307/2347751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101983207
97 rdf:type schema:CreativeWork
98 https://www.grid.ac/institutes/grid.9122.8 schema:alternateName University of Hannover
99 schema:name Institut für Mathematische Stochastik, Universität Hannover, Welfengarten 1, D-3000, Hannover 1, FRG
100 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...