A semi-numerical perturbation method for separable hamiltonian systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1990-03

AUTHORS

Jacques Henrard

ABSTRACT

A detailed account is given of a semi-numerical perturbation method which has been proposed and improved upon in a succession of previous papers. The method analyses the first order effect of a small perturbation applied to a non-trivial two-degreeof-freedom separable Hamiltonian system (including the description of resonances) and construct approximate surfaces of section of the perturbed system. When the separable Hamiltonian system is already the description of a resonance, as it is the case in the problems we have investigated in the previous papers, these resonances are actually secondary resonances. The key role of the method is the numerical description of the angle-action variables of the separable system. The method is thus able to describe the perturbations of non-trivial separable systems and is not confined to the analysis of a small neigborhood of their periodic orbits. More... »

PAGES

43-67

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00048581

DOI

http://dx.doi.org/10.1007/bf00048581

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020701464


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "D\u00e9partement de math\u00e9matique FUNDP, 8, Rempart de la Vierge, 5000, Namur, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Henrard", 
        "givenName": "Jacques", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0019-1035(83)90127-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014981779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0019-1035(83)90127-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014981779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-3053-7_38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037606397", 
          "https://doi.org/10.1007/978-94-009-3053-7_38"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-3053-7_38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037606397", 
          "https://doi.org/10.1007/978-94-009-3053-7_38"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0019-1035(85)90011-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042734403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0019-1035(85)90011-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042734403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01234307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045953884", 
          "https://doi.org/10.1007/bf01234307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01234307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045953884", 
          "https://doi.org/10.1007/bf01234307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00051201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046842398", 
          "https://doi.org/10.1007/bf00051201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00051201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046842398", 
          "https://doi.org/10.1007/bf00051201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00051013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053186131", 
          "https://doi.org/10.1007/bf00051013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00051013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053186131", 
          "https://doi.org/10.1007/bf00051013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0019-1035(90)90075-k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053643038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0019-1035(90)90075-k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053643038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/110811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058449390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/114819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058453398"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1990-03", 
    "datePublishedReg": "1990-03-01", 
    "description": "A detailed account is given of a semi-numerical perturbation method which has been proposed and improved upon in a succession of previous papers. The method analyses the first order effect of a small perturbation applied to a non-trivial two-degreeof-freedom separable Hamiltonian system (including the description of resonances) and construct approximate surfaces of section of the perturbed system. When the separable Hamiltonian system is already the description of a resonance, as it is the case in the problems we have investigated in the previous papers, these resonances are actually secondary resonances. The key role of the method is the numerical description of the angle-action variables of the separable system. The method is thus able to describe the perturbations of non-trivial separable systems and is not confined to the analysis of a small neigborhood of their periodic orbits.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00048581", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136436", 
        "issn": [
          "0008-8714", 
          "0923-2958"
        ], 
        "name": "Celestial Mechanics and Dynamical Astronomy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "49"
      }
    ], 
    "name": "A semi-numerical perturbation method for separable hamiltonian systems", 
    "pagination": "43-67", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "62a318635df45342be28d9c696d2d9164c23c2955ca1abf5c734581e20cc5dee"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00048581"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020701464"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00048581", 
      "https://app.dimensions.ai/details/publication/pub.1020701464"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130805_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00048581"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00048581'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00048581'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00048581'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00048581'


 

This table displays all metadata directly associated to this object as RDF triples.

90 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00048581 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N35280c79d16249b8bdd1e3d546da4ce2
4 schema:citation sg:pub.10.1007/978-94-009-3053-7_38
5 sg:pub.10.1007/bf00051013
6 sg:pub.10.1007/bf00051201
7 sg:pub.10.1007/bf01234307
8 https://doi.org/10.1016/0019-1035(83)90127-6
9 https://doi.org/10.1016/0019-1035(85)90011-9
10 https://doi.org/10.1016/0019-1035(90)90075-k
11 https://doi.org/10.1086/110811
12 https://doi.org/10.1086/114819
13 schema:datePublished 1990-03
14 schema:datePublishedReg 1990-03-01
15 schema:description A detailed account is given of a semi-numerical perturbation method which has been proposed and improved upon in a succession of previous papers. The method analyses the first order effect of a small perturbation applied to a non-trivial two-degreeof-freedom separable Hamiltonian system (including the description of resonances) and construct approximate surfaces of section of the perturbed system. When the separable Hamiltonian system is already the description of a resonance, as it is the case in the problems we have investigated in the previous papers, these resonances are actually secondary resonances. The key role of the method is the numerical description of the angle-action variables of the separable system. The method is thus able to describe the perturbations of non-trivial separable systems and is not confined to the analysis of a small neigborhood of their periodic orbits.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N15e77db277ed459a95272ec6aff64a76
20 Ne616d67fcd364bd7912d40b07d7f747a
21 sg:journal.1136436
22 schema:name A semi-numerical perturbation method for separable hamiltonian systems
23 schema:pagination 43-67
24 schema:productId N1077b722d46144ca98f4d6d358bbff9c
25 N911357f52153407584305da97559ed20
26 Ne964e87d4845471b93428df783e53fdc
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020701464
28 https://doi.org/10.1007/bf00048581
29 schema:sdDatePublished 2019-04-11T13:52
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N8bc61afcdf75427fa67da0eccfd39a15
32 schema:url http://link.springer.com/10.1007/BF00048581
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N1077b722d46144ca98f4d6d358bbff9c schema:name readcube_id
37 schema:value 62a318635df45342be28d9c696d2d9164c23c2955ca1abf5c734581e20cc5dee
38 rdf:type schema:PropertyValue
39 N15e77db277ed459a95272ec6aff64a76 schema:issueNumber 1
40 rdf:type schema:PublicationIssue
41 N35280c79d16249b8bdd1e3d546da4ce2 rdf:first N4bfa080d916540a59e58a073fc50d00e
42 rdf:rest rdf:nil
43 N4bfa080d916540a59e58a073fc50d00e schema:affiliation N92f3ccc02d994f8e9e7f62bfe44ac38c
44 schema:familyName Henrard
45 schema:givenName Jacques
46 rdf:type schema:Person
47 N8bc61afcdf75427fa67da0eccfd39a15 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N911357f52153407584305da97559ed20 schema:name dimensions_id
50 schema:value pub.1020701464
51 rdf:type schema:PropertyValue
52 N92f3ccc02d994f8e9e7f62bfe44ac38c schema:name Département de mathématique FUNDP, 8, Rempart de la Vierge, 5000, Namur, Belgium
53 rdf:type schema:Organization
54 Ne616d67fcd364bd7912d40b07d7f747a schema:volumeNumber 49
55 rdf:type schema:PublicationVolume
56 Ne964e87d4845471b93428df783e53fdc schema:name doi
57 schema:value 10.1007/bf00048581
58 rdf:type schema:PropertyValue
59 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
60 schema:name Mathematical Sciences
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
63 schema:name Numerical and Computational Mathematics
64 rdf:type schema:DefinedTerm
65 sg:journal.1136436 schema:issn 0008-8714
66 0923-2958
67 schema:name Celestial Mechanics and Dynamical Astronomy
68 rdf:type schema:Periodical
69 sg:pub.10.1007/978-94-009-3053-7_38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037606397
70 https://doi.org/10.1007/978-94-009-3053-7_38
71 rdf:type schema:CreativeWork
72 sg:pub.10.1007/bf00051013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053186131
73 https://doi.org/10.1007/bf00051013
74 rdf:type schema:CreativeWork
75 sg:pub.10.1007/bf00051201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046842398
76 https://doi.org/10.1007/bf00051201
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/bf01234307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045953884
79 https://doi.org/10.1007/bf01234307
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1016/0019-1035(83)90127-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014981779
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1016/0019-1035(85)90011-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042734403
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/0019-1035(90)90075-k schema:sameAs https://app.dimensions.ai/details/publication/pub.1053643038
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1086/110811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058449390
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1086/114819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058453398
90 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...