A semi-numerical perturbation method for separable hamiltonian systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1990-03

AUTHORS

Jacques Henrard

ABSTRACT

A detailed account is given of a semi-numerical perturbation method which has been proposed and improved upon in a succession of previous papers. The method analyses the first order effect of a small perturbation applied to a non-trivial two-degreeof-freedom separable Hamiltonian system (including the description of resonances) and construct approximate surfaces of section of the perturbed system. When the separable Hamiltonian system is already the description of a resonance, as it is the case in the problems we have investigated in the previous papers, these resonances are actually secondary resonances. The key role of the method is the numerical description of the angle-action variables of the separable system. The method is thus able to describe the perturbations of non-trivial separable systems and is not confined to the analysis of a small neigborhood of their periodic orbits. More... »

PAGES

43-67

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00048581

DOI

http://dx.doi.org/10.1007/bf00048581

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020701464


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "D\u00e9partement de math\u00e9matique FUNDP, 8, Rempart de la Vierge, 5000, Namur, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Henrard", 
        "givenName": "Jacques", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0019-1035(83)90127-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014981779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0019-1035(83)90127-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014981779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-3053-7_38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037606397", 
          "https://doi.org/10.1007/978-94-009-3053-7_38"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-3053-7_38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037606397", 
          "https://doi.org/10.1007/978-94-009-3053-7_38"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0019-1035(85)90011-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042734403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0019-1035(85)90011-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042734403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01234307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045953884", 
          "https://doi.org/10.1007/bf01234307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01234307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045953884", 
          "https://doi.org/10.1007/bf01234307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00051201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046842398", 
          "https://doi.org/10.1007/bf00051201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00051201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046842398", 
          "https://doi.org/10.1007/bf00051201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00051013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053186131", 
          "https://doi.org/10.1007/bf00051013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00051013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053186131", 
          "https://doi.org/10.1007/bf00051013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0019-1035(90)90075-k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053643038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0019-1035(90)90075-k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053643038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/110811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058449390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/114819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058453398"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1990-03", 
    "datePublishedReg": "1990-03-01", 
    "description": "A detailed account is given of a semi-numerical perturbation method which has been proposed and improved upon in a succession of previous papers. The method analyses the first order effect of a small perturbation applied to a non-trivial two-degreeof-freedom separable Hamiltonian system (including the description of resonances) and construct approximate surfaces of section of the perturbed system. When the separable Hamiltonian system is already the description of a resonance, as it is the case in the problems we have investigated in the previous papers, these resonances are actually secondary resonances. The key role of the method is the numerical description of the angle-action variables of the separable system. The method is thus able to describe the perturbations of non-trivial separable systems and is not confined to the analysis of a small neigborhood of their periodic orbits.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00048581", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136436", 
        "issn": [
          "0008-8714", 
          "0923-2958"
        ], 
        "name": "Celestial Mechanics and Dynamical Astronomy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "49"
      }
    ], 
    "name": "A semi-numerical perturbation method for separable hamiltonian systems", 
    "pagination": "43-67", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "62a318635df45342be28d9c696d2d9164c23c2955ca1abf5c734581e20cc5dee"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00048581"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020701464"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00048581", 
      "https://app.dimensions.ai/details/publication/pub.1020701464"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130805_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00048581"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00048581'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00048581'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00048581'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00048581'


 

This table displays all metadata directly associated to this object as RDF triples.

90 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00048581 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N0b95d0e46d4b431c8e6a0125ccb95c93
4 schema:citation sg:pub.10.1007/978-94-009-3053-7_38
5 sg:pub.10.1007/bf00051013
6 sg:pub.10.1007/bf00051201
7 sg:pub.10.1007/bf01234307
8 https://doi.org/10.1016/0019-1035(83)90127-6
9 https://doi.org/10.1016/0019-1035(85)90011-9
10 https://doi.org/10.1016/0019-1035(90)90075-k
11 https://doi.org/10.1086/110811
12 https://doi.org/10.1086/114819
13 schema:datePublished 1990-03
14 schema:datePublishedReg 1990-03-01
15 schema:description A detailed account is given of a semi-numerical perturbation method which has been proposed and improved upon in a succession of previous papers. The method analyses the first order effect of a small perturbation applied to a non-trivial two-degreeof-freedom separable Hamiltonian system (including the description of resonances) and construct approximate surfaces of section of the perturbed system. When the separable Hamiltonian system is already the description of a resonance, as it is the case in the problems we have investigated in the previous papers, these resonances are actually secondary resonances. The key role of the method is the numerical description of the angle-action variables of the separable system. The method is thus able to describe the perturbations of non-trivial separable systems and is not confined to the analysis of a small neigborhood of their periodic orbits.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N820a37c5be574326b48a84f0b7803e56
20 Na16c3ef592c44036a64abcf8e430d8ba
21 sg:journal.1136436
22 schema:name A semi-numerical perturbation method for separable hamiltonian systems
23 schema:pagination 43-67
24 schema:productId N5ad9c72eebc24f68b729ffa7059c21c6
25 Ne95504eb91134dc7860e160e2cde5427
26 Nead5a8204e9b4c86a71b1f0e71ad8c35
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020701464
28 https://doi.org/10.1007/bf00048581
29 schema:sdDatePublished 2019-04-11T13:52
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N020aa8d78641457aa878ec538210f913
32 schema:url http://link.springer.com/10.1007/BF00048581
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N020aa8d78641457aa878ec538210f913 schema:name Springer Nature - SN SciGraph project
37 rdf:type schema:Organization
38 N0b95d0e46d4b431c8e6a0125ccb95c93 rdf:first N1a00ae477a6845668fb3577bf3e4e404
39 rdf:rest rdf:nil
40 N1a00ae477a6845668fb3577bf3e4e404 schema:affiliation N4746d828c32342e49be9f6dc18df790d
41 schema:familyName Henrard
42 schema:givenName Jacques
43 rdf:type schema:Person
44 N4746d828c32342e49be9f6dc18df790d schema:name Département de mathématique FUNDP, 8, Rempart de la Vierge, 5000, Namur, Belgium
45 rdf:type schema:Organization
46 N5ad9c72eebc24f68b729ffa7059c21c6 schema:name doi
47 schema:value 10.1007/bf00048581
48 rdf:type schema:PropertyValue
49 N820a37c5be574326b48a84f0b7803e56 schema:volumeNumber 49
50 rdf:type schema:PublicationVolume
51 Na16c3ef592c44036a64abcf8e430d8ba schema:issueNumber 1
52 rdf:type schema:PublicationIssue
53 Ne95504eb91134dc7860e160e2cde5427 schema:name readcube_id
54 schema:value 62a318635df45342be28d9c696d2d9164c23c2955ca1abf5c734581e20cc5dee
55 rdf:type schema:PropertyValue
56 Nead5a8204e9b4c86a71b1f0e71ad8c35 schema:name dimensions_id
57 schema:value pub.1020701464
58 rdf:type schema:PropertyValue
59 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
60 schema:name Mathematical Sciences
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
63 schema:name Numerical and Computational Mathematics
64 rdf:type schema:DefinedTerm
65 sg:journal.1136436 schema:issn 0008-8714
66 0923-2958
67 schema:name Celestial Mechanics and Dynamical Astronomy
68 rdf:type schema:Periodical
69 sg:pub.10.1007/978-94-009-3053-7_38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037606397
70 https://doi.org/10.1007/978-94-009-3053-7_38
71 rdf:type schema:CreativeWork
72 sg:pub.10.1007/bf00051013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053186131
73 https://doi.org/10.1007/bf00051013
74 rdf:type schema:CreativeWork
75 sg:pub.10.1007/bf00051201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046842398
76 https://doi.org/10.1007/bf00051201
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/bf01234307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045953884
79 https://doi.org/10.1007/bf01234307
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1016/0019-1035(83)90127-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014981779
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1016/0019-1035(85)90011-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042734403
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/0019-1035(90)90075-k schema:sameAs https://app.dimensions.ai/details/publication/pub.1053643038
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1086/110811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058449390
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1086/114819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058453398
90 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...