Wong-Zakai approximations for stochastic differential equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1996-06

AUTHORS

Krystyna Twardowska

ABSTRACT

The aim of this paper is to give a wide introduction to approximation concepts in the theory of stochastic differential equations. The paper is principally concerned with Zong-Zakai approximations. Our aim is to fill a gap in the literature caused by the complete lack of monographs on such approximation methods for stochastic differential equations; this will be the objective of the author's forthcoming book. First, we briefly review the currently-known approximation results for finite- and infinite-dimensional equations. Then the author's results are preceded by the introduction of two new forms of correction terms in infinite dimensions appearing in the Wong-Zakai approximations. Finally, these results are divided into four parts: for stochastic delay equations, for semilinear and nonlinear stochastic equations in abstract spaces, and for the Navier-Stokes equations. We emphasize in this paper results rather than proofs. Some applications are indicated. More... »

PAGES

317-359

References to SciGraph publications

  • 1988-04. Numerical integration of stochastic differential equations in JOURNAL OF STATISTICAL PHYSICS
  • 1955-01. Continuous Markov processes and stochastic equations in RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO SERIES 2
  • 1972-03. Equations aux derivees partielles stochastiques non lineaires in ISRAEL JOURNAL OF MATHEMATICS
  • 1986-01. Support of the solution of a stochastic differential equation in LITHUANIAN MATHEMATICAL JOURNAL
  • 1991. Condition UT et stabilité en loi des solutions d’équations différentielles stochastiques in SÉMINAIRE DE PROBABILITÉS XXV
  • 1991-10. Stochastic Navier-Stokes equations in ACTA APPLICANDAE MATHEMATICAE
  • 1980. The maximum rate of convergence of discrete approximations for stochastic differential equations in STOCHASTIC DIFFERENTIAL SYSTEMS FILTERING AND CONTROL
  • 1985-10. Sp-stability of solutions of symmetric stochastic differential equations in LITHUANIAN MATHEMATICAL JOURNAL
  • 1989. The stability of stochastic partial differential equations and applications. Theorems on supports in STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS II
  • 1977. Theory of Functional Differential Equations in NONE
  • 1981. A taylor formula for semimartingales solving a stochastic equation in STOCHASTIC DIFFERENTIAL SYSTEMS
  • 1985-01. Discretization and simulation of stochastic differential equations in ACTA APPLICANDAE MATHEMATICAE
  • 1983. Semigroups of Linear Operators and Applications to Partial Differential Equations in NONE
  • 1984. Efficient numerical schemes for the approximation of expectations of functionals of the solution of a S.D.E., and applications in FILTERING AND CONTROL OF RANDOM PROCESSES
  • 1989-07. A Wong-Zakai-type theorem for certain discontinuous semimartingales in JOURNAL OF THEORETICAL PROBABILITY
  • 1992. Polynomial Approximation of Differential Equations in NONE
  • 1982. An efficient approximation scheme for a class of stochastic differential equations in ADVANCES IN FILTERING AND OPTIMAL STOCHASTIC CONTROL
  • 1992. Numerical Solution of Stochastic Differential Equations in NONE
  • 1967. Semi-Groups of Operators and Approximation in NONE
  • 1988. Approximation of stochastic differential equations and application of the stochastic calculus of variations to the rate of convergence in STOCHASTIC ANALYSIS AND RELATED TOPICS
  • 1994. A simple proof of the support theorem for diffusion processes in SÉMINAIRE DE PROBABILITÉS XXVIII
  • 1996. Numerical solution of stochastic differential equations on transputer network in APPLIED PARALLEL COMPUTING COMPUTATIONS IN PHYSICS, CHEMISTRY AND ENGINEERING SCIENCE
  • 1969. Riemann-Stieltjes approximations of stochastic integrals in PROBABILITY THEORY AND RELATED FIELDS
  • 1993-10. Gaussian approximations of Brownian motion in a stochastic integral in LITHUANIAN MATHEMATICAL JOURNAL
  • 1978. Infinite Dimensional Linear Systems Theory in NONE
  • 1977. Statistics of Random Processes I, General Theory in NONE
  • 1989-02-01. Convergence en loi des suites d'intégrales stochastiques sur l'espace 1 de Skorokhod in PROBABILITY THEORY AND RELATED FIELDS
  • 1986. Methods in Approximation, Techniques for Mathematical Modelling in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf00047670

    DOI

    http://dx.doi.org/10.1007/bf00047670

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1035730239


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Mathematics, Warsaw University of Technology, Pl. Politechniki 1, 00-661, Warsaw, Poland", 
              "id": "http://www.grid.ac/institutes/grid.1035.7", 
              "name": [
                "Institute of Mathematics, Warsaw University of Technology, Pl. Politechniki 1, 00-661, Warsaw, Poland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Twardowska", 
            "givenName": "Krystyna", 
            "id": "sg:person.015141564663.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015141564663.02"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-540-46783-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040930979", 
              "https://doi.org/10.1007/978-3-540-46783-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00995993", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044461417", 
              "https://doi.org/10.1007/bf00995993"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0073832", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011328779", 
              "https://doi.org/10.1007/bfb0073832"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00971347", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040477626", 
              "https://doi.org/10.1007/bf00971347"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0006577", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045434078", 
              "https://doi.org/10.1007/bfb0006577"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0100855", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045982095", 
              "https://doi.org/10.1007/bfb0100855"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01015322", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003460738", 
              "https://doi.org/10.1007/bf01015322"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0083939", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043315897", 
              "https://doi.org/10.1007/bfb0083939"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-46066-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043240248", 
              "https://doi.org/10.1007/978-3-642-46066-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-1665-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042480556", 
              "https://doi.org/10.1007/978-1-4757-1665-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0081935", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003920560", 
              "https://doi.org/10.1007/bfb0081935"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-12616-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001580100", 
              "https://doi.org/10.1007/978-3-662-12616-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0004526", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047485873", 
              "https://doi.org/10.1007/bfb0004526"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-5561-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042930842", 
              "https://doi.org/10.1007/978-1-4612-5561-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-60902-4_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035259000", 
              "https://doi.org/10.1007/3-540-60902-4_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00531642", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007146725", 
              "https://doi.org/10.1007/bf00531642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0006419", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002282904", 
              "https://doi.org/10.1007/bfb0006419"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-009-4600-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000349437", 
              "https://doi.org/10.1007/978-94-009-4600-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02846028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003235651", 
              "https://doi.org/10.1007/bf02846028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-9892-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021421011", 
              "https://doi.org/10.1007/978-1-4612-9892-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01054019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048743012", 
              "https://doi.org/10.1007/bf01054019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02761449", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002658974", 
              "https://doi.org/10.1007/bf02761449"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00343739", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014953042", 
              "https://doi.org/10.1007/bf00343739"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00047665", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002519401", 
              "https://doi.org/10.1007/bf00047665"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01438265", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044138761", 
              "https://doi.org/10.1007/bf01438265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00968331", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030160261", 
              "https://doi.org/10.1007/bf00968331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0006761", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109719072", 
              "https://doi.org/10.1007/bfb0006761"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0004007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037321715", 
              "https://doi.org/10.1007/bfb0004007"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1996-06", 
        "datePublishedReg": "1996-06-01", 
        "description": "The aim of this paper is to give a wide introduction to approximation concepts in the theory of stochastic differential equations. The paper is principally concerned with Zong-Zakai approximations. Our aim is to fill a gap in the literature caused by the complete lack of monographs on such approximation methods for stochastic differential equations; this will be the objective of the author's forthcoming book. First, we briefly review the currently-known approximation results for finite- and infinite-dimensional equations. Then the author's results are preceded by the introduction of two new forms of correction terms in infinite dimensions appearing in the Wong-Zakai approximations. Finally, these results are divided into four parts: for stochastic delay equations, for semilinear and nonlinear stochastic equations in abstract spaces, and for the Navier-Stokes equations. We emphasize in this paper results rather than proofs. Some applications are indicated.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf00047670", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1028030", 
            "issn": [
              "0167-8019", 
              "1572-9036"
            ], 
            "name": "Acta Applicandae Mathematicae", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "43"
          }
        ], 
        "keywords": [
          "stochastic differential equations", 
          "Wong\u2013Zakai approximations", 
          "differential equations", 
          "nonlinear stochastic equations", 
          "stochastic delay equations", 
          "infinite-dimensional equations", 
          "such approximation methods", 
          "Navier-Stokes equations", 
          "stochastic equations", 
          "delay equations", 
          "infinite dimensions", 
          "approximation concepts", 
          "approximation method", 
          "approximation results", 
          "abstract space", 
          "equations", 
          "correction term", 
          "approximation", 
          "author's forthcoming book", 
          "finite", 
          "paper results", 
          "authors' results", 
          "theory", 
          "forthcoming book", 
          "space", 
          "proof", 
          "results", 
          "dimensions", 
          "terms", 
          "applications", 
          "monograph", 
          "introduction", 
          "form", 
          "concept", 
          "gap", 
          "new forms", 
          "literature", 
          "objective", 
          "part", 
          "book", 
          "aim", 
          "wide introduction", 
          "lack", 
          "complete lack", 
          "paper", 
          "method"
        ], 
        "name": "Wong-Zakai approximations for stochastic differential equations", 
        "pagination": "317-359", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1035730239"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf00047670"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf00047670", 
          "https://app.dimensions.ai/details/publication/pub.1035730239"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:48", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_263.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf00047670"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00047670'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00047670'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00047670'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00047670'


     

    This table displays all metadata directly associated to this object as RDF triples.

    223 TRIPLES      21 PREDICATES      101 URIs      63 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf00047670 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 anzsrc-for:0102
    4 anzsrc-for:0104
    5 schema:author N40d8129918d44bb9aa024ffceb2f9386
    6 schema:citation sg:pub.10.1007/3-540-60902-4_5
    7 sg:pub.10.1007/978-1-4612-5561-1
    8 sg:pub.10.1007/978-1-4612-9892-2
    9 sg:pub.10.1007/978-1-4757-1665-8
    10 sg:pub.10.1007/978-3-540-46783-0
    11 sg:pub.10.1007/978-3-642-46066-1
    12 sg:pub.10.1007/978-3-662-12616-5
    13 sg:pub.10.1007/978-94-009-4600-2
    14 sg:pub.10.1007/bf00047665
    15 sg:pub.10.1007/bf00343739
    16 sg:pub.10.1007/bf00531642
    17 sg:pub.10.1007/bf00968331
    18 sg:pub.10.1007/bf00971347
    19 sg:pub.10.1007/bf00995993
    20 sg:pub.10.1007/bf01015322
    21 sg:pub.10.1007/bf01054019
    22 sg:pub.10.1007/bf01438265
    23 sg:pub.10.1007/bf02761449
    24 sg:pub.10.1007/bf02846028
    25 sg:pub.10.1007/bfb0004007
    26 sg:pub.10.1007/bfb0004526
    27 sg:pub.10.1007/bfb0006419
    28 sg:pub.10.1007/bfb0006577
    29 sg:pub.10.1007/bfb0006761
    30 sg:pub.10.1007/bfb0073832
    31 sg:pub.10.1007/bfb0081935
    32 sg:pub.10.1007/bfb0083939
    33 sg:pub.10.1007/bfb0100855
    34 schema:datePublished 1996-06
    35 schema:datePublishedReg 1996-06-01
    36 schema:description The aim of this paper is to give a wide introduction to approximation concepts in the theory of stochastic differential equations. The paper is principally concerned with Zong-Zakai approximations. Our aim is to fill a gap in the literature caused by the complete lack of monographs on such approximation methods for stochastic differential equations; this will be the objective of the author's forthcoming book. First, we briefly review the currently-known approximation results for finite- and infinite-dimensional equations. Then the author's results are preceded by the introduction of two new forms of correction terms in infinite dimensions appearing in the Wong-Zakai approximations. Finally, these results are divided into four parts: for stochastic delay equations, for semilinear and nonlinear stochastic equations in abstract spaces, and for the Navier-Stokes equations. We emphasize in this paper results rather than proofs. Some applications are indicated.
    37 schema:genre article
    38 schema:isAccessibleForFree false
    39 schema:isPartOf N90d787190e2248e18c0f42ca17a5b786
    40 Ne5c0708b19fe4b94884964a983f643a6
    41 sg:journal.1028030
    42 schema:keywords Navier-Stokes equations
    43 Wong–Zakai approximations
    44 abstract space
    45 aim
    46 applications
    47 approximation
    48 approximation concepts
    49 approximation method
    50 approximation results
    51 author's forthcoming book
    52 authors' results
    53 book
    54 complete lack
    55 concept
    56 correction term
    57 delay equations
    58 differential equations
    59 dimensions
    60 equations
    61 finite
    62 form
    63 forthcoming book
    64 gap
    65 infinite dimensions
    66 infinite-dimensional equations
    67 introduction
    68 lack
    69 literature
    70 method
    71 monograph
    72 new forms
    73 nonlinear stochastic equations
    74 objective
    75 paper
    76 paper results
    77 part
    78 proof
    79 results
    80 space
    81 stochastic delay equations
    82 stochastic differential equations
    83 stochastic equations
    84 such approximation methods
    85 terms
    86 theory
    87 wide introduction
    88 schema:name Wong-Zakai approximations for stochastic differential equations
    89 schema:pagination 317-359
    90 schema:productId N7dac4d57c3f14362939e12a3b3d62bdd
    91 Neb82aff341c94a869f3c0c3383f30a8e
    92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035730239
    93 https://doi.org/10.1007/bf00047670
    94 schema:sdDatePublished 2022-09-02T15:48
    95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    96 schema:sdPublisher Nfbe7057a1fa14065bce1a777a445c69b
    97 schema:url https://doi.org/10.1007/bf00047670
    98 sgo:license sg:explorer/license/
    99 sgo:sdDataset articles
    100 rdf:type schema:ScholarlyArticle
    101 N40d8129918d44bb9aa024ffceb2f9386 rdf:first sg:person.015141564663.02
    102 rdf:rest rdf:nil
    103 N7dac4d57c3f14362939e12a3b3d62bdd schema:name doi
    104 schema:value 10.1007/bf00047670
    105 rdf:type schema:PropertyValue
    106 N90d787190e2248e18c0f42ca17a5b786 schema:issueNumber 3
    107 rdf:type schema:PublicationIssue
    108 Ne5c0708b19fe4b94884964a983f643a6 schema:volumeNumber 43
    109 rdf:type schema:PublicationVolume
    110 Neb82aff341c94a869f3c0c3383f30a8e schema:name dimensions_id
    111 schema:value pub.1035730239
    112 rdf:type schema:PropertyValue
    113 Nfbe7057a1fa14065bce1a777a445c69b schema:name Springer Nature - SN SciGraph project
    114 rdf:type schema:Organization
    115 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    116 schema:name Mathematical Sciences
    117 rdf:type schema:DefinedTerm
    118 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    119 schema:name Pure Mathematics
    120 rdf:type schema:DefinedTerm
    121 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    122 schema:name Applied Mathematics
    123 rdf:type schema:DefinedTerm
    124 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    125 schema:name Statistics
    126 rdf:type schema:DefinedTerm
    127 sg:journal.1028030 schema:issn 0167-8019
    128 1572-9036
    129 schema:name Acta Applicandae Mathematicae
    130 schema:publisher Springer Nature
    131 rdf:type schema:Periodical
    132 sg:person.015141564663.02 schema:affiliation grid-institutes:grid.1035.7
    133 schema:familyName Twardowska
    134 schema:givenName Krystyna
    135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015141564663.02
    136 rdf:type schema:Person
    137 sg:pub.10.1007/3-540-60902-4_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035259000
    138 https://doi.org/10.1007/3-540-60902-4_5
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/978-1-4612-5561-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042930842
    141 https://doi.org/10.1007/978-1-4612-5561-1
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/978-1-4612-9892-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021421011
    144 https://doi.org/10.1007/978-1-4612-9892-2
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/978-1-4757-1665-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042480556
    147 https://doi.org/10.1007/978-1-4757-1665-8
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/978-3-540-46783-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040930979
    150 https://doi.org/10.1007/978-3-540-46783-0
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/978-3-642-46066-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043240248
    153 https://doi.org/10.1007/978-3-642-46066-1
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/978-3-662-12616-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001580100
    156 https://doi.org/10.1007/978-3-662-12616-5
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/978-94-009-4600-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000349437
    159 https://doi.org/10.1007/978-94-009-4600-2
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/bf00047665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002519401
    162 https://doi.org/10.1007/bf00047665
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/bf00343739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014953042
    165 https://doi.org/10.1007/bf00343739
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/bf00531642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007146725
    168 https://doi.org/10.1007/bf00531642
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/bf00968331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030160261
    171 https://doi.org/10.1007/bf00968331
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/bf00971347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040477626
    174 https://doi.org/10.1007/bf00971347
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/bf00995993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044461417
    177 https://doi.org/10.1007/bf00995993
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/bf01015322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003460738
    180 https://doi.org/10.1007/bf01015322
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/bf01054019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048743012
    183 https://doi.org/10.1007/bf01054019
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/bf01438265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044138761
    186 https://doi.org/10.1007/bf01438265
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1007/bf02761449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002658974
    189 https://doi.org/10.1007/bf02761449
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/bf02846028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003235651
    192 https://doi.org/10.1007/bf02846028
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/bfb0004007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037321715
    195 https://doi.org/10.1007/bfb0004007
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/bfb0004526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047485873
    198 https://doi.org/10.1007/bfb0004526
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/bfb0006419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002282904
    201 https://doi.org/10.1007/bfb0006419
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1007/bfb0006577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045434078
    204 https://doi.org/10.1007/bfb0006577
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1007/bfb0006761 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109719072
    207 https://doi.org/10.1007/bfb0006761
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1007/bfb0073832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011328779
    210 https://doi.org/10.1007/bfb0073832
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1007/bfb0081935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003920560
    213 https://doi.org/10.1007/bfb0081935
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1007/bfb0083939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043315897
    216 https://doi.org/10.1007/bfb0083939
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1007/bfb0100855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045982095
    219 https://doi.org/10.1007/bfb0100855
    220 rdf:type schema:CreativeWork
    221 grid-institutes:grid.1035.7 schema:alternateName Institute of Mathematics, Warsaw University of Technology, Pl. Politechniki 1, 00-661, Warsaw, Poland
    222 schema:name Institute of Mathematics, Warsaw University of Technology, Pl. Politechniki 1, 00-661, Warsaw, Poland
    223 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...