Positive operators on Krein spaces View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-05

AUTHORS

Y. A. Abramovich, C. D. Aliprantis, O. Burkinshaw

ABSTRACT

A Krein operator is a positive operator, acting on a partially ordered Banach space, that carries positive elements to strong units. The purpose of this paper is to present a survey of the remarkable spectral properties (most of which were established by M.G. Krein) of these operators. The proofs presented here seem to be simpler than the ones existing in the literature. Some new results are also obtained. For instance, it is shown that every positive operator on a Krein space which is not a multiple of the identity operator has a nontrivial hyperinvariant subspace. More... »

PAGES

1-22

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00046631

DOI

http://dx.doi.org/10.1007/bf00046631

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011759394


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Indiana University \u2013 Purdue University Indianapolis", 
          "id": "https://www.grid.ac/institutes/grid.257413.6", 
          "name": [
            "Department of Mathematics, IUPUI, 46205, Indianapolis, IN, U.S.A"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abramovich", 
        "givenName": "Y. A.", 
        "id": "sg:person.013761237533.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013761237533.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indiana University \u2013 Purdue University Indianapolis", 
          "id": "https://www.grid.ac/institutes/grid.257413.6", 
          "name": [
            "Department of Mathematics, IUPUI, 46205, Indianapolis, IN, U.S.A"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aliprantis", 
        "givenName": "C. D.", 
        "id": "sg:person.014135050231.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014135050231.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indiana University \u2013 Purdue University Indianapolis", 
          "id": "https://www.grid.ac/institutes/grid.257413.6", 
          "name": [
            "Department of Mathematics, IUPUI, 46205, Indianapolis, IN, U.S.A"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Burkinshaw", 
        "givenName": "O.", 
        "id": "sg:person.011747227346.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011747227346.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bfb0059130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011122270", 
          "https://doi.org/10.1007/bfb0059130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0059130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011122270", 
          "https://doi.org/10.1007/bfb0059130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01449896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036747242", 
          "https://doi.org/10.1007/bf01449896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-9928-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038819455", 
          "https://doi.org/10.1007/978-1-4684-9928-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-9928-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038819455", 
          "https://doi.org/10.1007/978-1-4684-9928-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/memo/0024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059343073"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1992-05", 
    "datePublishedReg": "1992-05-01", 
    "description": "A Krein operator is a positive operator, acting on a partially ordered Banach space, that carries positive elements to strong units. The purpose of this paper is to present a survey of the remarkable spectral properties (most of which were established by M.G. Krein) of these operators. The proofs presented here seem to be simpler than the ones existing in the literature. Some new results are also obtained. For instance, it is shown that every positive operator on a Krein space which is not a multiple of the identity operator has a nontrivial hyperinvariant subspace.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00046631", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1028030", 
        "issn": [
          "0167-8019", 
          "1572-9036"
        ], 
        "name": "Acta Applicandae Mathematicae", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "name": "Positive operators on Krein spaces", 
    "pagination": "1-22", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "380716b99d6434350e8bf5934fd49757fe9cd6222568b667a1b8ec4cb85a18ed"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00046631"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011759394"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00046631", 
      "https://app.dimensions.ai/details/publication/pub.1011759394"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130820_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00046631"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00046631'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00046631'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00046631'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00046631'


 

This table displays all metadata directly associated to this object as RDF triples.

90 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00046631 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N916d0f8ea42c47f79060280088c24585
4 schema:citation sg:pub.10.1007/978-1-4684-9928-5
5 sg:pub.10.1007/bf01449896
6 sg:pub.10.1007/bfb0059130
7 https://doi.org/10.1090/memo/0024
8 schema:datePublished 1992-05
9 schema:datePublishedReg 1992-05-01
10 schema:description A Krein operator is a positive operator, acting on a partially ordered Banach space, that carries positive elements to strong units. The purpose of this paper is to present a survey of the remarkable spectral properties (most of which were established by M.G. Krein) of these operators. The proofs presented here seem to be simpler than the ones existing in the literature. Some new results are also obtained. For instance, it is shown that every positive operator on a Krein space which is not a multiple of the identity operator has a nontrivial hyperinvariant subspace.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N4543b285cd1e445db6904302b13f7c9f
15 Nf8d79f7544094e8d86ea049edd85d04f
16 sg:journal.1028030
17 schema:name Positive operators on Krein spaces
18 schema:pagination 1-22
19 schema:productId N118488e285ad42fe9ed30b24294e77be
20 N7c340c00ecf34facb89305d1aedea1a2
21 Na7f2cb821fc44f188d8199d20516a5d6
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011759394
23 https://doi.org/10.1007/bf00046631
24 schema:sdDatePublished 2019-04-11T13:57
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N9bddfce6fae54553897e98ce20ac2bf7
27 schema:url http://link.springer.com/10.1007/BF00046631
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N118488e285ad42fe9ed30b24294e77be schema:name readcube_id
32 schema:value 380716b99d6434350e8bf5934fd49757fe9cd6222568b667a1b8ec4cb85a18ed
33 rdf:type schema:PropertyValue
34 N4543b285cd1e445db6904302b13f7c9f schema:volumeNumber 27
35 rdf:type schema:PublicationVolume
36 N7c340c00ecf34facb89305d1aedea1a2 schema:name doi
37 schema:value 10.1007/bf00046631
38 rdf:type schema:PropertyValue
39 N916d0f8ea42c47f79060280088c24585 rdf:first sg:person.013761237533.23
40 rdf:rest Nfa570e950d8144719bacb11954f59795
41 N9bddfce6fae54553897e98ce20ac2bf7 schema:name Springer Nature - SN SciGraph project
42 rdf:type schema:Organization
43 Na174394fc1d04feba89e15e6dd6bdae0 rdf:first sg:person.011747227346.83
44 rdf:rest rdf:nil
45 Na7f2cb821fc44f188d8199d20516a5d6 schema:name dimensions_id
46 schema:value pub.1011759394
47 rdf:type schema:PropertyValue
48 Nf8d79f7544094e8d86ea049edd85d04f schema:issueNumber 1-2
49 rdf:type schema:PublicationIssue
50 Nfa570e950d8144719bacb11954f59795 rdf:first sg:person.014135050231.02
51 rdf:rest Na174394fc1d04feba89e15e6dd6bdae0
52 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
53 schema:name Psychology and Cognitive Sciences
54 rdf:type schema:DefinedTerm
55 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
56 schema:name Psychology
57 rdf:type schema:DefinedTerm
58 sg:journal.1028030 schema:issn 0167-8019
59 1572-9036
60 schema:name Acta Applicandae Mathematicae
61 rdf:type schema:Periodical
62 sg:person.011747227346.83 schema:affiliation https://www.grid.ac/institutes/grid.257413.6
63 schema:familyName Burkinshaw
64 schema:givenName O.
65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011747227346.83
66 rdf:type schema:Person
67 sg:person.013761237533.23 schema:affiliation https://www.grid.ac/institutes/grid.257413.6
68 schema:familyName Abramovich
69 schema:givenName Y. A.
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013761237533.23
71 rdf:type schema:Person
72 sg:person.014135050231.02 schema:affiliation https://www.grid.ac/institutes/grid.257413.6
73 schema:familyName Aliprantis
74 schema:givenName C. D.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014135050231.02
76 rdf:type schema:Person
77 sg:pub.10.1007/978-1-4684-9928-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038819455
78 https://doi.org/10.1007/978-1-4684-9928-5
79 rdf:type schema:CreativeWork
80 sg:pub.10.1007/bf01449896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036747242
81 https://doi.org/10.1007/bf01449896
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/bfb0059130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011122270
84 https://doi.org/10.1007/bfb0059130
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1090/memo/0024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059343073
87 rdf:type schema:CreativeWork
88 https://www.grid.ac/institutes/grid.257413.6 schema:alternateName Indiana University – Purdue University Indianapolis
89 schema:name Department of Mathematics, IUPUI, 46205, Indianapolis, IN, U.S.A
90 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...