Normal modes for piecewise linear vibratory systems View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1996-06

AUTHORS

Shyh-Leh Chen, Steven W. Shaw

ABSTRACT

A method to construct the normal modes for a class of piecewise linear vibratory systems is developed in this study. The approach utilizes the concepts of Poincaré maps and invariant manifolds from the theory of dynamical systems. In contrast to conventional methods for smooth systems, which expand normal modes in a series form around an equilibrium point of interest, the present method expands the normal modes in a series form of polar coordinates in a neighborhood of an invariant disk of the system. It is found that the normal modes, modal dynamics and frequency-amplitude dependence relationship are all of piecewise type. A two degree of freedom example is used to demonstrate the method. More... »

PAGES

135-164

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00045454

DOI

http://dx.doi.org/10.1007/bf00045454

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026765473


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, Michigan State University, 48824, East Lansing, MI, U.S.A.", 
          "id": "http://www.grid.ac/institutes/grid.17088.36", 
          "name": [
            "Department of Mechanical Engineering, Michigan State University, 48824, East Lansing, MI, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Shyh-Leh", 
        "id": "sg:person.015714037055.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015714037055.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, Michigan State University, 48824, East Lansing, MI, U.S.A.", 
          "id": "http://www.grid.ac/institutes/grid.17088.36", 
          "name": [
            "Department of Mechanical Engineering, Michigan State University, 48824, East Lansing, MI, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shaw", 
        "givenName": "Steven W.", 
        "id": "sg:person.016303032223.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016303032223.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-94-009-1870-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109716533", 
          "https://doi.org/10.1007/978-94-009-1870-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-7091-9223-8_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052706443", 
          "https://doi.org/10.1007/978-3-7091-9223-8_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02430640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046200693", 
          "https://doi.org/10.1007/bf02430640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00045071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005799268", 
          "https://doi.org/10.1007/bf00045071"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1996-06", 
    "datePublishedReg": "1996-06-01", 
    "description": "A method to construct the normal modes for a class of piecewise linear vibratory systems is developed in this study. The approach utilizes the concepts of Poincar\u00e9 maps and invariant manifolds from the theory of dynamical systems. In contrast to conventional methods for smooth systems, which expand normal modes in a series form around an equilibrium point of interest, the present method expands the normal modes in a series form of polar coordinates in a neighborhood of an invariant disk of the system. It is found that the normal modes, modal dynamics and frequency-amplitude dependence relationship are all of piecewise type. A two degree of freedom example is used to demonstrate the method.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00045454", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1040905", 
        "issn": [
          "0924-090X", 
          "1573-269X"
        ], 
        "name": "Nonlinear Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "keywords": [
      "linear vibratory systems", 
      "vibratory system", 
      "series form", 
      "dynamical systems", 
      "invariant discs", 
      "invariant manifolds", 
      "smooth systems", 
      "equilibrium point", 
      "Poincar\u00e9 map", 
      "modal dynamics", 
      "freedom example", 
      "polar coordinates", 
      "normal modes", 
      "dependence relationships", 
      "present method", 
      "manifold", 
      "conventional methods", 
      "system", 
      "theory", 
      "coordinates", 
      "class", 
      "dynamics", 
      "neighborhood", 
      "form", 
      "approach", 
      "point", 
      "maps", 
      "mode", 
      "concept", 
      "interest", 
      "degree", 
      "types", 
      "disk", 
      "relationship", 
      "study", 
      "contrast", 
      "method", 
      "example", 
      "piecewise linear vibratory systems", 
      "frequency-amplitude dependence relationship", 
      "piecewise type"
    ], 
    "name": "Normal modes for piecewise linear vibratory systems", 
    "pagination": "135-164", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026765473"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00045454"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00045454", 
      "https://app.dimensions.ai/details/publication/pub.1026765473"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_305.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00045454"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00045454'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00045454'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00045454'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00045454'


 

This table displays all metadata directly associated to this object as RDF triples.

122 TRIPLES      22 PREDICATES      71 URIs      59 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00045454 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N54440cd21bfc49d1b8f1d42c87117a06
4 schema:citation sg:pub.10.1007/978-3-7091-9223-8_10
5 sg:pub.10.1007/978-94-009-1870-2
6 sg:pub.10.1007/bf00045071
7 sg:pub.10.1007/bf02430640
8 schema:datePublished 1996-06
9 schema:datePublishedReg 1996-06-01
10 schema:description A method to construct the normal modes for a class of piecewise linear vibratory systems is developed in this study. The approach utilizes the concepts of Poincaré maps and invariant manifolds from the theory of dynamical systems. In contrast to conventional methods for smooth systems, which expand normal modes in a series form around an equilibrium point of interest, the present method expands the normal modes in a series form of polar coordinates in a neighborhood of an invariant disk of the system. It is found that the normal modes, modal dynamics and frequency-amplitude dependence relationship are all of piecewise type. A two degree of freedom example is used to demonstrate the method.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree true
14 schema:isPartOf N16c48e2d82c54981b137174b9f74c6f7
15 N276b095ea6bd4253b8eca437c9651bf4
16 sg:journal.1040905
17 schema:keywords Poincaré map
18 approach
19 class
20 concept
21 contrast
22 conventional methods
23 coordinates
24 degree
25 dependence relationships
26 disk
27 dynamical systems
28 dynamics
29 equilibrium point
30 example
31 form
32 freedom example
33 frequency-amplitude dependence relationship
34 interest
35 invariant discs
36 invariant manifolds
37 linear vibratory systems
38 manifold
39 maps
40 method
41 modal dynamics
42 mode
43 neighborhood
44 normal modes
45 piecewise linear vibratory systems
46 piecewise type
47 point
48 polar coordinates
49 present method
50 relationship
51 series form
52 smooth systems
53 study
54 system
55 theory
56 types
57 vibratory system
58 schema:name Normal modes for piecewise linear vibratory systems
59 schema:pagination 135-164
60 schema:productId N1919b8eef48e47e99f519f805a928655
61 N6dcb8cca369649fe8c2e48e21e54ce44
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026765473
63 https://doi.org/10.1007/bf00045454
64 schema:sdDatePublished 2021-12-01T19:11
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher Nc0006b6c07c34fcba7edfb61e3b0311d
67 schema:url https://doi.org/10.1007/bf00045454
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N16c48e2d82c54981b137174b9f74c6f7 schema:issueNumber 2
72 rdf:type schema:PublicationIssue
73 N1919b8eef48e47e99f519f805a928655 schema:name dimensions_id
74 schema:value pub.1026765473
75 rdf:type schema:PropertyValue
76 N276b095ea6bd4253b8eca437c9651bf4 schema:volumeNumber 10
77 rdf:type schema:PublicationVolume
78 N54440cd21bfc49d1b8f1d42c87117a06 rdf:first sg:person.015714037055.90
79 rdf:rest N81bb7e533f1d4204a2880f34773d3b6f
80 N6dcb8cca369649fe8c2e48e21e54ce44 schema:name doi
81 schema:value 10.1007/bf00045454
82 rdf:type schema:PropertyValue
83 N81bb7e533f1d4204a2880f34773d3b6f rdf:first sg:person.016303032223.67
84 rdf:rest rdf:nil
85 Nc0006b6c07c34fcba7edfb61e3b0311d schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
88 schema:name Mathematical Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
91 schema:name Pure Mathematics
92 rdf:type schema:DefinedTerm
93 sg:journal.1040905 schema:issn 0924-090X
94 1573-269X
95 schema:name Nonlinear Dynamics
96 schema:publisher Springer Nature
97 rdf:type schema:Periodical
98 sg:person.015714037055.90 schema:affiliation grid-institutes:grid.17088.36
99 schema:familyName Chen
100 schema:givenName Shyh-Leh
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015714037055.90
102 rdf:type schema:Person
103 sg:person.016303032223.67 schema:affiliation grid-institutes:grid.17088.36
104 schema:familyName Shaw
105 schema:givenName Steven W.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016303032223.67
107 rdf:type schema:Person
108 sg:pub.10.1007/978-3-7091-9223-8_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052706443
109 https://doi.org/10.1007/978-3-7091-9223-8_10
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/978-94-009-1870-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109716533
112 https://doi.org/10.1007/978-94-009-1870-2
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/bf00045071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005799268
115 https://doi.org/10.1007/bf00045071
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/bf02430640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046200693
118 https://doi.org/10.1007/bf02430640
119 rdf:type schema:CreativeWork
120 grid-institutes:grid.17088.36 schema:alternateName Department of Mechanical Engineering, Michigan State University, 48824, East Lansing, MI, U.S.A.
121 schema:name Department of Mechanical Engineering, Michigan State University, 48824, East Lansing, MI, U.S.A.
122 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...