Use of bar as a selectable marker gene and for the production of herbicide-resistant rice plants from protoplasts View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1993-03

AUTHORS

Keerti S. Rathore, Vijay K. Chowdhury, Thomas K. Hodges

ABSTRACT

We have used the bar gene in combination with the herbicide Basta to select transformed rice (Oryza sativa L. cv. Radon) protoplasts for the production of herbicide-resistant rice plants. Protoplasts, obtained from regenerable suspension cultures established from immature embryo callus, were transformed using PEG-mediated DNA uptake. Transformed calli could be selected 2–4 weeks after placing the protoplast-derived calli on medium containing the selective agent, phosphinothricin (PPT), the active component of Basta. Calli resistant to PPT were capable of regenerating plants. Phosphinothricin acetyltransferase (PAT) assays confirmed the expression of the bar gene in plants obtained from PPT-resistant calli. The only exceptions were two plants obtained from the same callus that had multiple copies of the bar gene integrated into their genomes. The transgenic status of the plants was varified by Southern blot analysis. In our system, where the transformation was done via the protoplast method, there were very few escapes. The efficiency of co-transformation with a reporter gene gusA, was 30%. The To plants of Radon were self-fertile. Both the bar and gusA genes were transmitted to progeny as confirmed by Southern analysis. Both genes were expressed in T1 and T2 progenies. Enzyme analyses on T1 progeny plants also showed a gene dose response reflecting their homozygous and heterozygous status. The leaves of To plants and that of the progeny having the bar gene were resistant to application of Basta. Thus, the bar gene has proven to be a useful selectable and screenable marker for the transformation of rice plants and for the production of herbicide-resistant plants. More... »

PAGES

871-884

References to SciGraph publications

  • 1990-09-01. Inheritance and Expression of Chimeric Genes in the Progeny of Transgenic Maize Plants in BIO/TECHNOLOGY
  • 1992-04. Transgenic indica rice plants in THEORETICAL AND APPLIED GENETICS
  • 1991-11. A procedure for regenerating Japonica and Indica varieties of rice from protoplasts in PLANT MOLECULAR BIOLOGY REPORTER
  • 1992-06-01. Herbicide Resistant Fertile Transgenic Wheat Plants Obtained by Microprojectile Bombardment of Regenerable Embryogenic Callus in NATURE BIOTECHNOLOGY
  • 1986-10. The bialaphos biosynthetic genes ofStreptomyces hygroscopicus: Molecular cloning and characterization of the gene cluster in MOLECULAR GENETICS AND GENOMICS
  • 1977-01. Chromosomal behaviour in somatic hybrids of soybean-Nicotiana glauca in MOLECULAR GENETICS AND GENOMICS
  • 1988-12. Efficient regeneration of transgenic plants from rice protoplasts and correctly regulated expression of the foreign gene in the plants in THEORETICAL AND APPLIED GENETICS
  • 1988-12. Molecular mapping of rice chromosomes in THEORETICAL AND APPLIED GENETICS
  • 1985-05. Molecular and general genetics of a hybrid foreign gene introduced into tobacco by direct gene transfer in MOLECULAR GENETICS AND GENOMICS
  • 1987-12. Assaying chimeric genes in plants: The GUS gene fusion system in PLANT MOLECULAR BIOLOGY REPORTER
  • 1990-07. Growth, ammonia accumulation and glutamine synthetase activity in alfalfa (Medicago sativa L.) shoots and cell cultures treated with phosphinothricin in PLANT CELL REPORTS
  • 1991-10. Production of Transgenic Rice (Oryza Sativa L.) Plants from Agronomically Important Indica and Japonica Varieties via Electric Discharge Particle Acceleration of Exogenous DNA into Immature Zygotic Embryos in NATURE BIOTECHNOLOGY
  • 1990-12. Expression of a truncated tomato polygalacturonase gene inhibits expression of the endogenous gene in transgenic plants in MOLECULAR GENETICS AND GENOMICS
  • 1989-03. Fertile transgenic rice plants regenerated from transformed protoplasts in NATURE
  • 1992-06. Transgenic herbicide-resistant Atropa belladonna using an Ri binary vector and inheritance of the transgenic trait in PLANT CELL REPORTS
  • 1990-02. Synthesis and accumulation of pea plastocyanin in transgenic tobacco plants in PLANT MOLECULAR BIOLOGY
  • 1992-12. Fertile indica and japonica rice plants regenerated from protoplasts isolated from embryogenic haploid suspension cultures in PLANT CELL REPORTS
  • 1992-03-01. Transformation of Sugarbeet (Beta vulgaris L.) and Evaluation of Herbicide Resistance in Transgenic Plants in NATURE BIOTECHNOLOGY
  • 1989-06. Plant regeneration from indica rice (Oryza sativa L.) protoplasts in PLANTA
  • 1988-09-01. Transgenic Rice Plants After Direct Gene Transfer into Protoplasts in NATURE BIOTECHNOLOGY
  • Journal

    TITLE

    Plant Molecular Biology

    ISSUE

    5

    VOLUME

    21

    Related Patents

  • Plant Centromere Compositions
  • Plants Modified With Mini-Chromosomes
  • Expression Cassettes For Transgenic Expression Of Nucleic Acids
  • Plant Artificial Chromosome (Plac) Compositions And Methods
  • Method For Producing Genetically Transformed Rice Which Expresses A Gene That Is Active In Vaccination For Diarrhoea By Using Gene Recombination
  • Expression Cassettes For Transgenic Expression Of Nucleic Acids
  • Use Of The Maize X112 Mutant Ahas 2 Gene And Imidazolinone Herbicides For Selection Of Transgenic Monocots, Maize, Rice And Wheat Plants Resistant To The Imidazolinone Herbicides
  • Transgenic Plant Which Has Been Genetically Engineered With A Gene Expression Vector
  • Plant Centromere Compositions
  • Transgenic Plants Expressing Glk1 And Cca1 Having Increased Nitrogen Assimilation Capacity
  • Comprises Isopentenyltransferase, Cytokinin, And/Or Luciferase, And Domain Comprising Estrogen Receptor; For Inducing Shoot Formation In Tobacco And Lettuce Plants
  • Centromere Sequences And Minichromosomes
  • Chemical Inducible Promoter Used To Obtain Transgenic Plants With A Silent Marker And Organisms And Cells And Methods Of Using Same For Screening For Mutations
  • Methods Of Affecting Nitrogen Assimilation In Plants
  • Plants Modified With Mini-Chromosomes
  • Plants Modified With Mini-Chromosomes
  • Improved Plastid Transformation Of Higher Plants And Production Of Transgenic Plants With Herbicide Resistance
  • Crop Heterosis And Herbicide
  • Compositions And Methods For The Modulation Of Gene Expression In Plants
  • Sorghum Centromere Sequences And Minichromosomes
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf00027118

    DOI

    http://dx.doi.org/10.1007/bf00027118

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1009479489

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/8467080


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Plant Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Acetyltransferases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aminobutyrates", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Drug Resistance", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Markers", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Herbicides", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oryza", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Plants, Genetically Modified", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transfection", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Botany and Plant Pathology, Purdue University, 47907, INWest Lafayette, USA", 
              "id": "http://www.grid.ac/institutes/grid.169077.e", 
              "name": [
                "Department of Botany and Plant Pathology, Purdue University, 47907, INWest Lafayette, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rathore", 
            "givenName": "Keerti S.", 
            "id": "sg:person.01023474367.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023474367.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Plant Tissue Culture Section, Department of Genetics, Haryana Agricultural University, 125004, Hisar, India", 
              "id": "http://www.grid.ac/institutes/grid.7151.2", 
              "name": [
                "Plant Tissue Culture Section, Department of Genetics, Haryana Agricultural University, 125004, Hisar, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chowdhury", 
            "givenName": "Vijay K.", 
            "id": "sg:person.016170526435.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016170526435.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Botany and Plant Pathology, Purdue University, 47907, INWest Lafayette, USA", 
              "id": "http://www.grid.ac/institutes/grid.169077.e", 
              "name": [
                "Department of Botany and Plant Pathology, Purdue University, 47907, INWest Lafayette, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hodges", 
            "givenName": "Thomas K.", 
            "id": "sg:person.01205672654.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205672654.00"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nbt0692-667", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008148779", 
              "https://doi.org/10.1038/nbt0692-667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0988-1072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032752526", 
              "https://doi.org/10.1038/nbt0988-1072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00262443", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020763717", 
              "https://doi.org/10.1007/bf00262443"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02428031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034701767", 
              "https://doi.org/10.1007/bf02428031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00273666", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001248404", 
              "https://doi.org/10.1007/bf00273666"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0392-309", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036028674", 
              "https://doi.org/10.1038/nbt0392-309"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00235069", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038247681", 
              "https://doi.org/10.1007/bf00235069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00226708", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048740126", 
              "https://doi.org/10.1007/bf00226708"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/338274a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040743981", 
              "https://doi.org/10.1038/338274a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00330255", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036019563", 
              "https://doi.org/10.1007/bf00330255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1091-957", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014438272", 
              "https://doi.org/10.1038/nbt1091-957"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02667740", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017993505", 
              "https://doi.org/10.1007/bf02667740"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00391860", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004605251", 
              "https://doi.org/10.1007/bf00391860"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00268120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036028356", 
              "https://doi.org/10.1007/bf00268120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02672007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036812619", 
              "https://doi.org/10.1007/bf02672007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00232422", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042066998", 
              "https://doi.org/10.1007/bf00232422"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0990-833", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025361066", 
              "https://doi.org/10.1038/nbt0990-833"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00231554", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001928310", 
              "https://doi.org/10.1007/bf00231554"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00273668", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051425707", 
              "https://doi.org/10.1007/bf00273668"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00018563", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014364828", 
              "https://doi.org/10.1007/bf00018563"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1993-03", 
        "datePublishedReg": "1993-03-01", 
        "description": "We have used the bar gene in combination with the herbicide Basta to select transformed rice (Oryza sativa L. cv. Radon) protoplasts for the production of herbicide-resistant rice plants. Protoplasts, obtained from regenerable suspension cultures established from immature embryo callus, were transformed using PEG-mediated DNA uptake. Transformed calli could be selected 2\u20134 weeks after placing the protoplast-derived calli on medium containing the selective agent, phosphinothricin (PPT), the active component of Basta. Calli resistant to PPT were capable of regenerating plants. Phosphinothricin acetyltransferase (PAT) assays confirmed the expression of the bar gene in plants obtained from PPT-resistant calli. The only exceptions were two plants obtained from the same callus that had multiple copies of the bar gene integrated into their genomes. The transgenic status of the plants was varified by Southern blot analysis. In our system, where the transformation was done via the protoplast method, there were very few escapes. The efficiency of co-transformation with a reporter gene gusA, was 30%. The To plants of Radon were self-fertile. Both the bar and gusA genes were transmitted to progeny as confirmed by Southern analysis. Both genes were expressed in T1 and T2 progenies. Enzyme analyses on T1 progeny plants also showed a gene dose response reflecting their homozygous and heterozygous status. The leaves of To plants and that of the progeny having the bar gene were resistant to application of Basta. Thus, the bar gene has proven to be a useful selectable and screenable marker for the transformation of rice plants and for the production of herbicide-resistant plants.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf00027118", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1101246", 
            "issn": [
              "0167-4412", 
              "1573-5028"
            ], 
            "name": "Plant Molecular Biology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "21"
          }
        ], 
        "keywords": [
          "bar gene", 
          "rice plants", 
          "herbicide-resistant plants", 
          "reporter gene gusA", 
          "application of Basta", 
          "T1 progeny plants", 
          "selectable marker gene", 
          "PPT-resistant calli", 
          "immature embryo callus", 
          "protoplast-derived calli", 
          "Southern blot analysis", 
          "regenerable suspension cultures", 
          "progeny plants", 
          "gusA gene", 
          "T2 progeny", 
          "screenable marker", 
          "herbicide Basta", 
          "DNA uptake", 
          "same callus", 
          "gene dose response", 
          "Southern analysis", 
          "marker genes", 
          "transgenic status", 
          "protoplast method", 
          "phosphinothricin", 
          "genes", 
          "multiple copies", 
          "selective agents", 
          "plants", 
          "embryo callus", 
          "suspension cultures", 
          "Basta", 
          "blot analysis", 
          "progeny", 
          "callus", 
          "enzyme analysis", 
          "protoplasts", 
          "genome", 
          "heterozygous status", 
          "gusA", 
          "leaves", 
          "production", 
          "rice", 
          "copies", 
          "expression", 
          "only exception", 
          "assays", 
          "uptake", 
          "markers", 
          "analysis", 
          "active components", 
          "escape", 
          "culture", 
          "response", 
          "exception", 
          "components", 
          "transformation", 
          "status", 
          "dose response", 
          "medium", 
          "agents", 
          "combination", 
          "PEG", 
          "system", 
          "efficiency", 
          "use", 
          "use of bars", 
          "T1", 
          "applications", 
          "method", 
          "weeks", 
          "bar", 
          "radon"
        ], 
        "name": "Use of bar as a selectable marker gene and for the production of herbicide-resistant rice plants from protoplasts", 
        "pagination": "871-884", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1009479489"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf00027118"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "8467080"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf00027118", 
          "https://app.dimensions.ai/details/publication/pub.1009479489"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T16:52", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_232.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf00027118"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00027118'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00027118'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00027118'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00027118'


     

    This table displays all metadata directly associated to this object as RDF triples.

    267 TRIPLES      21 PREDICATES      128 URIs      99 LITERALS      15 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf00027118 schema:about N2c66b51b48e141d2a4b53505cffd89b9
    2 N8d71d4de2a7046deaf78fe07e1aa6869
    3 N983b8043bc82471598dbf5978af3e0cd
    4 Nae47458ce3ee4d4ba10241591ffebd22
    5 Nb9860915adf443f9a754cd1f6e441712
    6 Ndb89111132904a4ebbefd82ffbfe0863
    7 Ndcad5de9d32143739c7074a7a3d6d9d1
    8 Ne73f568526b3409a93b68a504f56e226
    9 anzsrc-for:06
    10 anzsrc-for:0604
    11 anzsrc-for:0607
    12 schema:author N4644f47fa20f458ea591a0bf8b6d6665
    13 schema:citation sg:pub.10.1007/bf00018563
    14 sg:pub.10.1007/bf00226708
    15 sg:pub.10.1007/bf00231554
    16 sg:pub.10.1007/bf00232422
    17 sg:pub.10.1007/bf00235069
    18 sg:pub.10.1007/bf00262443
    19 sg:pub.10.1007/bf00268120
    20 sg:pub.10.1007/bf00273666
    21 sg:pub.10.1007/bf00273668
    22 sg:pub.10.1007/bf00330255
    23 sg:pub.10.1007/bf00391860
    24 sg:pub.10.1007/bf02428031
    25 sg:pub.10.1007/bf02667740
    26 sg:pub.10.1007/bf02672007
    27 sg:pub.10.1038/338274a0
    28 sg:pub.10.1038/nbt0392-309
    29 sg:pub.10.1038/nbt0692-667
    30 sg:pub.10.1038/nbt0988-1072
    31 sg:pub.10.1038/nbt0990-833
    32 sg:pub.10.1038/nbt1091-957
    33 schema:datePublished 1993-03
    34 schema:datePublishedReg 1993-03-01
    35 schema:description We have used the bar gene in combination with the herbicide Basta to select transformed rice (Oryza sativa L. cv. Radon) protoplasts for the production of herbicide-resistant rice plants. Protoplasts, obtained from regenerable suspension cultures established from immature embryo callus, were transformed using PEG-mediated DNA uptake. Transformed calli could be selected 2–4 weeks after placing the protoplast-derived calli on medium containing the selective agent, phosphinothricin (PPT), the active component of Basta. Calli resistant to PPT were capable of regenerating plants. Phosphinothricin acetyltransferase (PAT) assays confirmed the expression of the bar gene in plants obtained from PPT-resistant calli. The only exceptions were two plants obtained from the same callus that had multiple copies of the bar gene integrated into their genomes. The transgenic status of the plants was varified by Southern blot analysis. In our system, where the transformation was done via the protoplast method, there were very few escapes. The efficiency of co-transformation with a reporter gene gusA, was 30%. The To plants of Radon were self-fertile. Both the bar and gusA genes were transmitted to progeny as confirmed by Southern analysis. Both genes were expressed in T1 and T2 progenies. Enzyme analyses on T1 progeny plants also showed a gene dose response reflecting their homozygous and heterozygous status. The leaves of To plants and that of the progeny having the bar gene were resistant to application of Basta. Thus, the bar gene has proven to be a useful selectable and screenable marker for the transformation of rice plants and for the production of herbicide-resistant plants.
    36 schema:genre article
    37 schema:isAccessibleForFree false
    38 schema:isPartOf Na43b5e30bd244a5c998669ffeeb0501f
    39 Nd0eb34c89a7d44a2a89cb0b7cff401a2
    40 sg:journal.1101246
    41 schema:keywords Basta
    42 DNA uptake
    43 PEG
    44 PPT-resistant calli
    45 Southern analysis
    46 Southern blot analysis
    47 T1
    48 T1 progeny plants
    49 T2 progeny
    50 active components
    51 agents
    52 analysis
    53 application of Basta
    54 applications
    55 assays
    56 bar
    57 bar gene
    58 blot analysis
    59 callus
    60 combination
    61 components
    62 copies
    63 culture
    64 dose response
    65 efficiency
    66 embryo callus
    67 enzyme analysis
    68 escape
    69 exception
    70 expression
    71 gene dose response
    72 genes
    73 genome
    74 gusA
    75 gusA gene
    76 herbicide Basta
    77 herbicide-resistant plants
    78 heterozygous status
    79 immature embryo callus
    80 leaves
    81 marker genes
    82 markers
    83 medium
    84 method
    85 multiple copies
    86 only exception
    87 phosphinothricin
    88 plants
    89 production
    90 progeny
    91 progeny plants
    92 protoplast method
    93 protoplast-derived calli
    94 protoplasts
    95 radon
    96 regenerable suspension cultures
    97 reporter gene gusA
    98 response
    99 rice
    100 rice plants
    101 same callus
    102 screenable marker
    103 selectable marker gene
    104 selective agents
    105 status
    106 suspension cultures
    107 system
    108 transformation
    109 transgenic status
    110 uptake
    111 use
    112 use of bars
    113 weeks
    114 schema:name Use of bar as a selectable marker gene and for the production of herbicide-resistant rice plants from protoplasts
    115 schema:pagination 871-884
    116 schema:productId N2104e2ead68e45c6a19df1181e3d7118
    117 N505c12a558f447089b4c9e36a5b177b3
    118 Nfd1f4b0f9775426c863c8370ad01a5df
    119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009479489
    120 https://doi.org/10.1007/bf00027118
    121 schema:sdDatePublished 2022-08-04T16:52
    122 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    123 schema:sdPublisher N7ff6059a85a449a6adccbbad4fc232ef
    124 schema:url https://doi.org/10.1007/bf00027118
    125 sgo:license sg:explorer/license/
    126 sgo:sdDataset articles
    127 rdf:type schema:ScholarlyArticle
    128 N0dbd84b8335840ae829eb46470afb9df rdf:first sg:person.016170526435.84
    129 rdf:rest N36dbf6ba369841568ec4138ab628de5c
    130 N2104e2ead68e45c6a19df1181e3d7118 schema:name doi
    131 schema:value 10.1007/bf00027118
    132 rdf:type schema:PropertyValue
    133 N2c66b51b48e141d2a4b53505cffd89b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Plants, Genetically Modified
    135 rdf:type schema:DefinedTerm
    136 N36dbf6ba369841568ec4138ab628de5c rdf:first sg:person.01205672654.00
    137 rdf:rest rdf:nil
    138 N4644f47fa20f458ea591a0bf8b6d6665 rdf:first sg:person.01023474367.14
    139 rdf:rest N0dbd84b8335840ae829eb46470afb9df
    140 N505c12a558f447089b4c9e36a5b177b3 schema:name dimensions_id
    141 schema:value pub.1009479489
    142 rdf:type schema:PropertyValue
    143 N7ff6059a85a449a6adccbbad4fc232ef schema:name Springer Nature - SN SciGraph project
    144 rdf:type schema:Organization
    145 N8d71d4de2a7046deaf78fe07e1aa6869 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Aminobutyrates
    147 rdf:type schema:DefinedTerm
    148 N983b8043bc82471598dbf5978af3e0cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Genetic Markers
    150 rdf:type schema:DefinedTerm
    151 Na43b5e30bd244a5c998669ffeeb0501f schema:issueNumber 5
    152 rdf:type schema:PublicationIssue
    153 Nae47458ce3ee4d4ba10241591ffebd22 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Acetyltransferases
    155 rdf:type schema:DefinedTerm
    156 Nb9860915adf443f9a754cd1f6e441712 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Transfection
    158 rdf:type schema:DefinedTerm
    159 Nd0eb34c89a7d44a2a89cb0b7cff401a2 schema:volumeNumber 21
    160 rdf:type schema:PublicationVolume
    161 Ndb89111132904a4ebbefd82ffbfe0863 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Oryza
    163 rdf:type schema:DefinedTerm
    164 Ndcad5de9d32143739c7074a7a3d6d9d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Herbicides
    166 rdf:type schema:DefinedTerm
    167 Ne73f568526b3409a93b68a504f56e226 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Drug Resistance
    169 rdf:type schema:DefinedTerm
    170 Nfd1f4b0f9775426c863c8370ad01a5df schema:name pubmed_id
    171 schema:value 8467080
    172 rdf:type schema:PropertyValue
    173 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    174 schema:name Biological Sciences
    175 rdf:type schema:DefinedTerm
    176 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    177 schema:name Genetics
    178 rdf:type schema:DefinedTerm
    179 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
    180 schema:name Plant Biology
    181 rdf:type schema:DefinedTerm
    182 sg:journal.1101246 schema:issn 0167-4412
    183 1573-5028
    184 schema:name Plant Molecular Biology
    185 schema:publisher Springer Nature
    186 rdf:type schema:Periodical
    187 sg:person.01023474367.14 schema:affiliation grid-institutes:grid.169077.e
    188 schema:familyName Rathore
    189 schema:givenName Keerti S.
    190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023474367.14
    191 rdf:type schema:Person
    192 sg:person.01205672654.00 schema:affiliation grid-institutes:grid.169077.e
    193 schema:familyName Hodges
    194 schema:givenName Thomas K.
    195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205672654.00
    196 rdf:type schema:Person
    197 sg:person.016170526435.84 schema:affiliation grid-institutes:grid.7151.2
    198 schema:familyName Chowdhury
    199 schema:givenName Vijay K.
    200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016170526435.84
    201 rdf:type schema:Person
    202 sg:pub.10.1007/bf00018563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014364828
    203 https://doi.org/10.1007/bf00018563
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/bf00226708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048740126
    206 https://doi.org/10.1007/bf00226708
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/bf00231554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001928310
    209 https://doi.org/10.1007/bf00231554
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/bf00232422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042066998
    212 https://doi.org/10.1007/bf00232422
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/bf00235069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038247681
    215 https://doi.org/10.1007/bf00235069
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/bf00262443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020763717
    218 https://doi.org/10.1007/bf00262443
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/bf00268120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036028356
    221 https://doi.org/10.1007/bf00268120
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1007/bf00273666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001248404
    224 https://doi.org/10.1007/bf00273666
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1007/bf00273668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051425707
    227 https://doi.org/10.1007/bf00273668
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1007/bf00330255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036019563
    230 https://doi.org/10.1007/bf00330255
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1007/bf00391860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004605251
    233 https://doi.org/10.1007/bf00391860
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1007/bf02428031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034701767
    236 https://doi.org/10.1007/bf02428031
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1007/bf02667740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017993505
    239 https://doi.org/10.1007/bf02667740
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1007/bf02672007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036812619
    242 https://doi.org/10.1007/bf02672007
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/338274a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040743981
    245 https://doi.org/10.1038/338274a0
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1038/nbt0392-309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036028674
    248 https://doi.org/10.1038/nbt0392-309
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1038/nbt0692-667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008148779
    251 https://doi.org/10.1038/nbt0692-667
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1038/nbt0988-1072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032752526
    254 https://doi.org/10.1038/nbt0988-1072
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1038/nbt0990-833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025361066
    257 https://doi.org/10.1038/nbt0990-833
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1038/nbt1091-957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014438272
    260 https://doi.org/10.1038/nbt1091-957
    261 rdf:type schema:CreativeWork
    262 grid-institutes:grid.169077.e schema:alternateName Department of Botany and Plant Pathology, Purdue University, 47907, INWest Lafayette, USA
    263 schema:name Department of Botany and Plant Pathology, Purdue University, 47907, INWest Lafayette, USA
    264 rdf:type schema:Organization
    265 grid-institutes:grid.7151.2 schema:alternateName Plant Tissue Culture Section, Department of Genetics, Haryana Agricultural University, 125004, Hisar, India
    266 schema:name Plant Tissue Culture Section, Department of Genetics, Haryana Agricultural University, 125004, Hisar, India
    267 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...