Description of loadings and screenings of cracks with the aid of universal weight functions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1986-07

AUTHORS

H. O. K. Kirchner

ABSTRACT

The stress intensity vector Ki is defined as the limiting behaviour of the stress near the tip of a crack, the stress components being proportional to r−1/2 for any external loading. Internal stresses caused by dislocations show the same power dependence at the crack tip; the stress intensity associated with a loading can thus be screened (or amplified) by a plastic zone. Since for any particular specimen and crack geometry the stress intensity vector must be a functional of the loading and screening which are of vectorial character (lines of forces fi or dislocations with a Burgers vector bi) one can define two tensorial weight functions, one for screenings, Dsi(x, a), and one for forces, Fsi(x, a), so that the stress intensity Ks can be found by integration over the product of weight functions and dislocation or force density. In order to find the weight functions the displacement field and the Airy stress vector must be known for some, completely arbitrary, loading or screening. More... »

PAGES

173-181

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00018926

DOI

http://dx.doi.org/10.1007/bf00018926

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042627316


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0905", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Civil Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Festkoerperphysik, Boltzmanngasse 5, A-1090, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institut f\u00fcr Festkoerperphysik, Boltzmanngasse 5, A-1090, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kirchner", 
        "givenName": "H. O. K.", 
        "id": "sg:person.07365635372.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07365635372.11"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-662-11634-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048013699", 
          "https://doi.org/10.1007/978-3-662-11634-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00043132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023345150", 
          "https://doi.org/10.1007/bf00043132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-94719-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109711334", 
          "https://doi.org/10.1007/978-3-642-94719-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1986-07", 
    "datePublishedReg": "1986-07-01", 
    "description": "The stress intensity vector Ki is defined as the limiting behaviour of the stress near the tip of a crack, the stress components being proportional to r\u22121/2 for any external loading. Internal stresses caused by dislocations show the same power dependence at the crack tip; the stress intensity associated with a loading can thus be screened (or amplified) by a plastic zone. Since for any particular specimen and crack geometry the stress intensity vector must be a functional of the loading and screening which are of vectorial character (lines of forces fi or dislocations with a Burgers vector bi) one can define two tensorial weight functions, one for screenings, Dsi(x, a), and one for forces, Fsi(x, a), so that the stress intensity Ks can be found by integration over the product of weight functions and dislocation or force density. In order to find the weight functions the displacement field and the Airy stress vector must be known for some, completely arbitrary, loading or screening.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00018926", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1124104", 
        "issn": [
          "0376-9429", 
          "1573-2673"
        ], 
        "name": "International Journal of Fracture", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "31"
      }
    ], 
    "keywords": [
      "plastic zone", 
      "crack tip", 
      "internal stress", 
      "external loading", 
      "displacement field", 
      "stress components", 
      "force density", 
      "stress intensity", 
      "stress vector", 
      "universal weight function", 
      "loading", 
      "cracks", 
      "intensity vector", 
      "same power dependence", 
      "power dependence", 
      "weight function", 
      "dislocations", 
      "particular specimen", 
      "tip", 
      "stress", 
      "specimen", 
      "force", 
      "density", 
      "zone", 
      "behavior", 
      "field", 
      "dependence", 
      "integration", 
      "order", 
      "components", 
      "vector", 
      "function", 
      "products", 
      "KS", 
      "vectorial character", 
      "intensity", 
      "aid", 
      "description", 
      "Ki", 
      "character", 
      "screening"
    ], 
    "name": "Description of loadings and screenings of cracks with the aid of universal weight functions", 
    "pagination": "173-181", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042627316"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00018926"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00018926", 
      "https://app.dimensions.ai/details/publication/pub.1042627316"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_201.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00018926"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00018926'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00018926'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00018926'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00018926'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      21 PREDICATES      69 URIs      58 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00018926 schema:about anzsrc-for:09
2 anzsrc-for:0905
3 schema:author N1386469f06ca4376861a9416725b30e2
4 schema:citation sg:pub.10.1007/978-3-642-94719-3
5 sg:pub.10.1007/978-3-662-11634-0
6 sg:pub.10.1007/bf00043132
7 schema:datePublished 1986-07
8 schema:datePublishedReg 1986-07-01
9 schema:description The stress intensity vector Ki is defined as the limiting behaviour of the stress near the tip of a crack, the stress components being proportional to r−1/2 for any external loading. Internal stresses caused by dislocations show the same power dependence at the crack tip; the stress intensity associated with a loading can thus be screened (or amplified) by a plastic zone. Since for any particular specimen and crack geometry the stress intensity vector must be a functional of the loading and screening which are of vectorial character (lines of forces fi or dislocations with a Burgers vector bi) one can define two tensorial weight functions, one for screenings, Dsi(x, a), and one for forces, Fsi(x, a), so that the stress intensity Ks can be found by integration over the product of weight functions and dislocation or force density. In order to find the weight functions the displacement field and the Airy stress vector must be known for some, completely arbitrary, loading or screening.
10 schema:genre article
11 schema:isAccessibleForFree false
12 schema:isPartOf N3b44fe036d9647d1b40f650b4d231124
13 Nd85adaf18a6149608f88034db952e461
14 sg:journal.1124104
15 schema:keywords KS
16 Ki
17 aid
18 behavior
19 character
20 components
21 crack tip
22 cracks
23 density
24 dependence
25 description
26 dislocations
27 displacement field
28 external loading
29 field
30 force
31 force density
32 function
33 integration
34 intensity
35 intensity vector
36 internal stress
37 loading
38 order
39 particular specimen
40 plastic zone
41 power dependence
42 products
43 same power dependence
44 screening
45 specimen
46 stress
47 stress components
48 stress intensity
49 stress vector
50 tip
51 universal weight function
52 vector
53 vectorial character
54 weight function
55 zone
56 schema:name Description of loadings and screenings of cracks with the aid of universal weight functions
57 schema:pagination 173-181
58 schema:productId N8dc8d5d438d54869906b88857761809d
59 Nfc4d0d5cf1274f4091c904cef77b03fc
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042627316
61 https://doi.org/10.1007/bf00018926
62 schema:sdDatePublished 2022-11-24T20:45
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher Ndce58913eda44b0f95eac460d6ba3465
65 schema:url https://doi.org/10.1007/bf00018926
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N1386469f06ca4376861a9416725b30e2 rdf:first sg:person.07365635372.11
70 rdf:rest rdf:nil
71 N3b44fe036d9647d1b40f650b4d231124 schema:issueNumber 3
72 rdf:type schema:PublicationIssue
73 N8dc8d5d438d54869906b88857761809d schema:name doi
74 schema:value 10.1007/bf00018926
75 rdf:type schema:PropertyValue
76 Nd85adaf18a6149608f88034db952e461 schema:volumeNumber 31
77 rdf:type schema:PublicationVolume
78 Ndce58913eda44b0f95eac460d6ba3465 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 Nfc4d0d5cf1274f4091c904cef77b03fc schema:name dimensions_id
81 schema:value pub.1042627316
82 rdf:type schema:PropertyValue
83 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
84 schema:name Engineering
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0905 schema:inDefinedTermSet anzsrc-for:
87 schema:name Civil Engineering
88 rdf:type schema:DefinedTerm
89 sg:journal.1124104 schema:issn 0376-9429
90 1573-2673
91 schema:name International Journal of Fracture
92 schema:publisher Springer Nature
93 rdf:type schema:Periodical
94 sg:person.07365635372.11 schema:affiliation grid-institutes:None
95 schema:familyName Kirchner
96 schema:givenName H. O. K.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07365635372.11
98 rdf:type schema:Person
99 sg:pub.10.1007/978-3-642-94719-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109711334
100 https://doi.org/10.1007/978-3-642-94719-3
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/978-3-662-11634-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048013699
103 https://doi.org/10.1007/978-3-662-11634-0
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/bf00043132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023345150
106 https://doi.org/10.1007/bf00043132
107 rdf:type schema:CreativeWork
108 grid-institutes:None schema:alternateName Institut für Festkoerperphysik, Boltzmanngasse 5, A-1090, Vienna, Austria
109 schema:name Institut für Festkoerperphysik, Boltzmanngasse 5, A-1090, Vienna, Austria
110 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...