Fractional SEIR Model for Modelling the Spread of COVID-19 in Namibia View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2021-04-02

AUTHORS

Samuel M. Nuugulu , Albert Shikongo , David Elago , Andreas T. Salom , Kolade M. Owolabi

ABSTRACT

In this chapter, a fractional SEIR model and its robust first-order unconditionally convergent numerical method is proposed. Initial conditions based on Namibian data as of 4 July 2020 were used to simulate two scenarios. In the first scenario, it is assumed that the proper control mechanisms for kerbing the spread of COVID-19 are in place. In the second scenario, a worst-case scenario is presented. The worst case is characterised by ineffective COVID-19 control mechanisms. Results indicate that if proper control mechanisms are followed, Namibia can contain the spread of COVID-19 in the country to a lowest level of 1, 800 positive cases by October 2020. However, if no proper control mechanisms are followed, Namibia can hit a potentially unmanageable level of over 14, 000 positive cases by October 2020. From a mathematical point of view, results indicate that the fractional SEIR model and the proposed method are appropriate for modelling the chaotic nature observed in the spread of COVID-19. Results herein are fundamentally important to policy and decision-makers in devising appropriate control and management strategies for curbing further spread of COVID-19 in Namibia. More... »

PAGES

161-184

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-981-33-6264-2_9

DOI

http://dx.doi.org/10.1007/978-981-33-6264-2_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1136853498


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, University of Namibia, Private Bag 13301, Windhoek, Namibia", 
          "id": "http://www.grid.ac/institutes/grid.10598.35", 
          "name": [
            "Department of Mathematics, University of Namibia, Private Bag 13301, Windhoek, Namibia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nuugulu", 
        "givenName": "Samuel M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, University of Namibia, Private Bag 13301, Windhoek, Namibia", 
          "id": "http://www.grid.ac/institutes/grid.10598.35", 
          "name": [
            "Department of Mathematics, University of Namibia, Private Bag 13301, Windhoek, Namibia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shikongo", 
        "givenName": "Albert", 
        "id": "sg:person.07444200243.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07444200243.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, University of Namibia, Private Bag 13301, Windhoek, Namibia", 
          "id": "http://www.grid.ac/institutes/grid.10598.35", 
          "name": [
            "Department of Mathematics, University of Namibia, Private Bag 13301, Windhoek, Namibia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Elago", 
        "givenName": "David", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CERENA-Polo FEUP, Faculty of Engineering, University of Porto, Porto, Portugal", 
          "id": "http://www.grid.ac/institutes/grid.5808.5", 
          "name": [
            "CERENA-Polo FEUP, Faculty of Engineering, University of Porto, Porto, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salom", 
        "givenName": "Andreas T.", 
        "id": "sg:person.07770216247.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07770216247.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Sciences, Federal University of Technology, Akure, Ondo State, Nigeria", 
          "id": "http://www.grid.ac/institutes/grid.411257.4", 
          "name": [
            "Department of Mathematical Sciences, Federal University of Technology, Akure, Ondo State, Nigeria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Owolabi", 
        "givenName": "Kolade M.", 
        "id": "sg:person.01056074451.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056074451.53"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2021-04-02", 
    "datePublishedReg": "2021-04-02", 
    "description": "In this chapter, a fractional SEIR model and its robust first-order unconditionally convergent numerical method is proposed. Initial conditions based on Namibian data as of 4 July 2020 were used to simulate two scenarios. In the first scenario, it is assumed that the proper control mechanisms for kerbing the spread of COVID-19 are in place. In the second scenario, a worst-case scenario is presented. The worst case is characterised by ineffective COVID-19 control mechanisms. Results indicate that if proper control mechanisms are followed, Namibia can contain the spread of COVID-19 in the country to a lowest level of 1,\u00a0800 positive cases by October 2020. However, if no proper control mechanisms are followed, Namibia can hit a potentially unmanageable level of over 14,\u00a0000 positive cases by October 2020. From a mathematical point of view, results indicate that the fractional SEIR model and the proposed method are appropriate for modelling the chaotic nature observed in the spread of COVID-19. Results herein are fundamentally important to policy and decision-makers in devising appropriate control and management strategies for curbing further spread of COVID-19 in Namibia.", 
    "editor": [
      {
        "familyName": "Shah", 
        "givenName": "Nita H.", 
        "type": "Person"
      }, 
      {
        "familyName": "Mittal", 
        "givenName": "Mandeep", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-981-33-6264-2_9", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-981-33-6263-5", 
        "978-981-33-6264-2"
      ], 
      "name": "Mathematical Analysis for Transmission of COVID-19", 
      "type": "Book"
    }, 
    "keywords": [
      "fractional SEIR model", 
      "SEIR model", 
      "convergent numerical method", 
      "mathematical point", 
      "numerical method", 
      "initial conditions", 
      "chaotic nature", 
      "worst case", 
      "control mechanisms", 
      "model", 
      "worst-case scenario", 
      "unmanageable levels", 
      "scenarios", 
      "first scenario", 
      "second scenario", 
      "cases", 
      "results", 
      "point", 
      "proper control mechanisms", 
      "spread", 
      "conditions", 
      "control", 
      "nature", 
      "data", 
      "appropriate controls", 
      "chapter", 
      "view", 
      "mechanism", 
      "strategies", 
      "place", 
      "levels", 
      "policy", 
      "management strategies", 
      "COVID-19", 
      "further spread", 
      "low levels", 
      "Namibia", 
      "positive cases", 
      "countries", 
      "method"
    ], 
    "name": "Fractional SEIR Model for Modelling the Spread of COVID-19 in Namibia", 
    "pagination": "161-184", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1136853498"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-981-33-6264-2_9"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-981-33-6264-2_9", 
      "https://app.dimensions.ai/details/publication/pub.1136853498"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T06:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_318.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-981-33-6264-2_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-981-33-6264-2_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-981-33-6264-2_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-981-33-6264-2_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-981-33-6264-2_9'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      22 PREDICATES      63 URIs      56 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-981-33-6264-2_9 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N639aa20366f94c65aed662a8dfcdd0c7
4 schema:datePublished 2021-04-02
5 schema:datePublishedReg 2021-04-02
6 schema:description In this chapter, a fractional SEIR model and its robust first-order unconditionally convergent numerical method is proposed. Initial conditions based on Namibian data as of 4 July 2020 were used to simulate two scenarios. In the first scenario, it is assumed that the proper control mechanisms for kerbing the spread of COVID-19 are in place. In the second scenario, a worst-case scenario is presented. The worst case is characterised by ineffective COVID-19 control mechanisms. Results indicate that if proper control mechanisms are followed, Namibia can contain the spread of COVID-19 in the country to a lowest level of 1, 800 positive cases by October 2020. However, if no proper control mechanisms are followed, Namibia can hit a potentially unmanageable level of over 14, 000 positive cases by October 2020. From a mathematical point of view, results indicate that the fractional SEIR model and the proposed method are appropriate for modelling the chaotic nature observed in the spread of COVID-19. Results herein are fundamentally important to policy and decision-makers in devising appropriate control and management strategies for curbing further spread of COVID-19 in Namibia.
7 schema:editor N2d9f1256de3a4301ba9726fbd112b5d2
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Nef30cb36c12d4765ab82b28ed05812e8
11 schema:keywords COVID-19
12 Namibia
13 SEIR model
14 appropriate controls
15 cases
16 chaotic nature
17 chapter
18 conditions
19 control
20 control mechanisms
21 convergent numerical method
22 countries
23 data
24 first scenario
25 fractional SEIR model
26 further spread
27 initial conditions
28 levels
29 low levels
30 management strategies
31 mathematical point
32 mechanism
33 method
34 model
35 nature
36 numerical method
37 place
38 point
39 policy
40 positive cases
41 proper control mechanisms
42 results
43 scenarios
44 second scenario
45 spread
46 strategies
47 unmanageable levels
48 view
49 worst case
50 worst-case scenario
51 schema:name Fractional SEIR Model for Modelling the Spread of COVID-19 in Namibia
52 schema:pagination 161-184
53 schema:productId N30ac57018d1d486d9c4d0ac19f8221e8
54 Nb8ba9a8146af4350a284e1621278f582
55 schema:publisher N99256ff5ae96470785ea5b0627420ca3
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1136853498
57 https://doi.org/10.1007/978-981-33-6264-2_9
58 schema:sdDatePublished 2022-10-01T06:56
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher Nf5c6d690eb734d2ca20773f2664b583f
61 schema:url https://doi.org/10.1007/978-981-33-6264-2_9
62 sgo:license sg:explorer/license/
63 sgo:sdDataset chapters
64 rdf:type schema:Chapter
65 N22628cb0567b4e75baa34f4385be0629 rdf:first sg:person.01056074451.53
66 rdf:rest rdf:nil
67 N2d9f1256de3a4301ba9726fbd112b5d2 rdf:first N531ff40321814fcfac88add433e4f5ec
68 rdf:rest Nc6b47b1c179243f985a8ce1e208d1f3e
69 N30ac57018d1d486d9c4d0ac19f8221e8 schema:name dimensions_id
70 schema:value pub.1136853498
71 rdf:type schema:PropertyValue
72 N4267239d2ace447199718da04329b578 rdf:first Ndd6b0922d7c3446082c631574134a839
73 rdf:rest N4e67753153ba453d89e342051ed985e5
74 N4e67753153ba453d89e342051ed985e5 rdf:first sg:person.07770216247.36
75 rdf:rest N22628cb0567b4e75baa34f4385be0629
76 N531ff40321814fcfac88add433e4f5ec schema:familyName Shah
77 schema:givenName Nita H.
78 rdf:type schema:Person
79 N639aa20366f94c65aed662a8dfcdd0c7 rdf:first N68727ea90bd04ef19f6ebfaf43fe841c
80 rdf:rest Na3c2209af61c41b6a4193ff9baf82328
81 N68727ea90bd04ef19f6ebfaf43fe841c schema:affiliation grid-institutes:grid.10598.35
82 schema:familyName Nuugulu
83 schema:givenName Samuel M.
84 rdf:type schema:Person
85 N99256ff5ae96470785ea5b0627420ca3 schema:name Springer Nature
86 rdf:type schema:Organisation
87 Na3c2209af61c41b6a4193ff9baf82328 rdf:first sg:person.07444200243.17
88 rdf:rest N4267239d2ace447199718da04329b578
89 Nb8ba9a8146af4350a284e1621278f582 schema:name doi
90 schema:value 10.1007/978-981-33-6264-2_9
91 rdf:type schema:PropertyValue
92 Nc6b47b1c179243f985a8ce1e208d1f3e rdf:first Ndde22bb1eaee4b4b8763bbf0c049e170
93 rdf:rest rdf:nil
94 Ndd6b0922d7c3446082c631574134a839 schema:affiliation grid-institutes:grid.10598.35
95 schema:familyName Elago
96 schema:givenName David
97 rdf:type schema:Person
98 Ndde22bb1eaee4b4b8763bbf0c049e170 schema:familyName Mittal
99 schema:givenName Mandeep
100 rdf:type schema:Person
101 Nef30cb36c12d4765ab82b28ed05812e8 schema:isbn 978-981-33-6263-5
102 978-981-33-6264-2
103 schema:name Mathematical Analysis for Transmission of COVID-19
104 rdf:type schema:Book
105 Nf5c6d690eb734d2ca20773f2664b583f schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
108 schema:name Mathematical Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
111 schema:name Applied Mathematics
112 rdf:type schema:DefinedTerm
113 sg:person.01056074451.53 schema:affiliation grid-institutes:grid.411257.4
114 schema:familyName Owolabi
115 schema:givenName Kolade M.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056074451.53
117 rdf:type schema:Person
118 sg:person.07444200243.17 schema:affiliation grid-institutes:grid.10598.35
119 schema:familyName Shikongo
120 schema:givenName Albert
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07444200243.17
122 rdf:type schema:Person
123 sg:person.07770216247.36 schema:affiliation grid-institutes:grid.5808.5
124 schema:familyName Salom
125 schema:givenName Andreas T.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07770216247.36
127 rdf:type schema:Person
128 grid-institutes:grid.10598.35 schema:alternateName Department of Mathematics, University of Namibia, Private Bag 13301, Windhoek, Namibia
129 schema:name Department of Mathematics, University of Namibia, Private Bag 13301, Windhoek, Namibia
130 rdf:type schema:Organization
131 grid-institutes:grid.411257.4 schema:alternateName Department of Mathematical Sciences, Federal University of Technology, Akure, Ondo State, Nigeria
132 schema:name Department of Mathematical Sciences, Federal University of Technology, Akure, Ondo State, Nigeria
133 rdf:type schema:Organization
134 grid-institutes:grid.5808.5 schema:alternateName CERENA-Polo FEUP, Faculty of Engineering, University of Porto, Porto, Portugal
135 schema:name CERENA-Polo FEUP, Faculty of Engineering, University of Porto, Porto, Portugal
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...