Imaging Connectomics and the Understanding of Brain Diseases View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2019-11-10

AUTHORS

Andrea Insabato , Gustavo Deco , Matthieu Gilson

ABSTRACT

Neuroimaging-based personalized medicine is emerging to characterize brain disorders and their evolution at the patient level. In this chapter, we present the most classic methods used to infer large-scale brain connectivity based on functional MRI. We adopt a modeling perspective where every connectivity measure is linked to a specific model that allows to interpret the connectivity estimate. This perspective allows to analyze the quality of retrieved connectivity profiles in terms of modeling error and estimation error. In the first part of the chapter, we present undirected functional connectivity (Pearson’s correlation and MI) and effective connectivity (partial correlation), as well as directed effective connectivity (VAR, MOU, Granger causality, DCM). In addition, some of these measures correspond to fully connected graphs (Pearson’s correlation) while others to sparse ones (MOU, DCM), where the sparsity can come from the integration of functional and structural data. In the second part, we claim that machine learning tools are better suited than null-hypothesis testing to link the estimated connectomes with diagnosis and prognosis of neuropsychiatric diseases. Finally, we propose that linear models and features selection are preferable to more complex and nonlinear tools (when prediction performance is on a par) for building interpretable algorithms to predict clinical variables. More... »

PAGES

139-158

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-981-32-9721-0_8

DOI

http://dx.doi.org/10.1007/978-981-32-9721-0_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1122411304

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/31705494


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Connectome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linear Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neural Networks, Computer", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut de Neurosciences de la Timone, UMR CNRS 7289, Aix Marseille University, 13385, Marseille, France", 
          "id": "http://www.grid.ac/institutes/grid.462486.a", 
          "name": [
            "Institut de Neurosciences de la Timone, UMR CNRS 7289, Aix Marseille University, 13385, Marseille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Insabato", 
        "givenName": "Andrea", 
        "id": "sg:person.0701041267.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701041267.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituci\u00f3 Catalana de la Recerca i Estudis Avanats (ICREA), Universitat Pompeu Fabra, Barcelona, Spain", 
          "id": "http://www.grid.ac/institutes/grid.5612.0", 
          "name": [
            "Instituci\u00f3 Catalana de la Recerca i Estudis Avanats (ICREA), Universitat Pompeu Fabra, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deco", 
        "givenName": "Gustavo", 
        "id": "sg:person.0741536706.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741536706.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Theoretical and Computational Neuroscience, Center for Brain and Cognition, Universitat Pompeu Fabra, C\\Ramon Trias Fargas, 25\u201327, 08005, Barcelona, Spain", 
          "id": "http://www.grid.ac/institutes/grid.5612.0", 
          "name": [
            "Theoretical and Computational Neuroscience, Center for Brain and Cognition, Universitat Pompeu Fabra, C\\Ramon Trias Fargas, 25\u201327, 08005, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gilson", 
        "givenName": "Matthieu", 
        "id": "sg:person.01362642406.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362642406.55"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2019-11-10", 
    "datePublishedReg": "2019-11-10", 
    "description": "Neuroimaging-based personalized medicine is emerging to characterize brain disorders and their evolution at the patient level. In this chapter, we present the most classic methods used to infer large-scale brain connectivity based on functional MRI. We adopt a modeling perspective where every connectivity measure is linked to a specific model that allows to interpret the connectivity estimate. This perspective allows to analyze the quality of retrieved connectivity profiles in terms of modeling error and estimation error. In the first part of the chapter, we present undirected functional connectivity (Pearson\u2019s correlation and MI) and effective connectivity (partial correlation), as well as directed effective connectivity (VAR, MOU, Granger causality, DCM). In addition, some of these measures correspond to fully connected graphs (Pearson\u2019s correlation) while others to sparse ones (MOU, DCM), where the sparsity can come from the integration of functional and structural data. In the second part, we claim that machine learning tools are better suited than null-hypothesis testing to link the estimated connectomes with diagnosis and prognosis of neuropsychiatric diseases. Finally, we propose that linear models and features selection are preferable to more complex and nonlinear tools (when prediction performance is on a par) for building interpretable algorithms to predict clinical variables.", 
    "editor": [
      {
        "familyName": "Kim", 
        "givenName": "Yong-Ku", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-981-32-9721-0_8", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-981-32-9720-3", 
        "978-981-32-9721-0"
      ], 
      "name": "Frontiers in Psychiatry", 
      "type": "Book"
    }, 
    "keywords": [
      "machine learning tools", 
      "interpretable algorithms", 
      "feature selection", 
      "large-scale brain connectivity", 
      "learning tool", 
      "sparse ones", 
      "connectivity", 
      "modeling perspective", 
      "classic methods", 
      "estimation error", 
      "specific model", 
      "connected graph", 
      "connectivity estimates", 
      "nonlinear tools", 
      "algorithm", 
      "tool", 
      "sparsity", 
      "graph", 
      "connectivity measures", 
      "error", 
      "brain connectivity", 
      "connectomics", 
      "null hypothesis testing", 
      "undirected functional connectivity", 
      "integration", 
      "model", 
      "effective connectivity", 
      "personalized medicine", 
      "second part", 
      "first part", 
      "connectome", 
      "selection", 
      "connectivity profiles", 
      "quality", 
      "linear model", 
      "perspective", 
      "data", 
      "method", 
      "part", 
      "chapter", 
      "one", 
      "terms", 
      "measures", 
      "brain diseases", 
      "testing", 
      "structural data", 
      "brain disorders", 
      "evolution", 
      "variables", 
      "estimates", 
      "addition", 
      "understanding", 
      "patient level", 
      "functional MRI", 
      "MRI", 
      "functional connectivity", 
      "levels", 
      "medicine", 
      "diagnosis", 
      "profile", 
      "disease", 
      "clinical variables", 
      "neuropsychiatric diseases", 
      "prognosis", 
      "disorders"
    ], 
    "name": "Imaging Connectomics and the Understanding of Brain Diseases", 
    "pagination": "139-158", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1122411304"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-981-32-9721-0_8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "31705494"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-981-32-9721-0_8", 
      "https://app.dimensions.ai/details/publication/pub.1122411304"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_393.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-981-32-9721-0_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-981-32-9721-0_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-981-32-9721-0_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-981-32-9721-0_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-981-32-9721-0_8'


 

This table displays all metadata directly associated to this object as RDF triples.

172 TRIPLES      23 PREDICATES      96 URIs      90 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-981-32-9721-0_8 schema:about N07101283dd394f7aaedf745fbc61f361
2 N1364be6cb8034872b4ea3e49c4025aa7
3 Nb42490cfee8647c8965dc78f1f15b8f8
4 Nc45d38e81cd941de9ed4b924e0e0f1ea
5 Nf22e834ad0564dfdafdac9bbd6a4d338
6 Nf8811aaf1f8e4fb5bda619ff8e16854e
7 Nfe77c4723c2c4dbaaa59a01bcac0e33e
8 anzsrc-for:11
9 schema:author N11e5e06e657145b9a69436debfd827a1
10 schema:datePublished 2019-11-10
11 schema:datePublishedReg 2019-11-10
12 schema:description Neuroimaging-based personalized medicine is emerging to characterize brain disorders and their evolution at the patient level. In this chapter, we present the most classic methods used to infer large-scale brain connectivity based on functional MRI. We adopt a modeling perspective where every connectivity measure is linked to a specific model that allows to interpret the connectivity estimate. This perspective allows to analyze the quality of retrieved connectivity profiles in terms of modeling error and estimation error. In the first part of the chapter, we present undirected functional connectivity (Pearson’s correlation and MI) and effective connectivity (partial correlation), as well as directed effective connectivity (VAR, MOU, Granger causality, DCM). In addition, some of these measures correspond to fully connected graphs (Pearson’s correlation) while others to sparse ones (MOU, DCM), where the sparsity can come from the integration of functional and structural data. In the second part, we claim that machine learning tools are better suited than null-hypothesis testing to link the estimated connectomes with diagnosis and prognosis of neuropsychiatric diseases. Finally, we propose that linear models and features selection are preferable to more complex and nonlinear tools (when prediction performance is on a par) for building interpretable algorithms to predict clinical variables.
13 schema:editor Nc5531baae2584bbea92566335d450a87
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf Neb279f75ab01480daf53a8c3a3d436e7
18 schema:keywords MRI
19 addition
20 algorithm
21 brain connectivity
22 brain diseases
23 brain disorders
24 chapter
25 classic methods
26 clinical variables
27 connected graph
28 connectivity
29 connectivity estimates
30 connectivity measures
31 connectivity profiles
32 connectome
33 connectomics
34 data
35 diagnosis
36 disease
37 disorders
38 effective connectivity
39 error
40 estimates
41 estimation error
42 evolution
43 feature selection
44 first part
45 functional MRI
46 functional connectivity
47 graph
48 integration
49 interpretable algorithms
50 large-scale brain connectivity
51 learning tool
52 levels
53 linear model
54 machine learning tools
55 measures
56 medicine
57 method
58 model
59 modeling perspective
60 neuropsychiatric diseases
61 nonlinear tools
62 null hypothesis testing
63 one
64 part
65 patient level
66 personalized medicine
67 perspective
68 profile
69 prognosis
70 quality
71 second part
72 selection
73 sparse ones
74 sparsity
75 specific model
76 structural data
77 terms
78 testing
79 tool
80 understanding
81 undirected functional connectivity
82 variables
83 schema:name Imaging Connectomics and the Understanding of Brain Diseases
84 schema:pagination 139-158
85 schema:productId N2e2d972ec1834b86bb17444979585a41
86 Nad94a87a865649ec89fdf509d81141c9
87 Ne4b1e5e285934e80aa61a46aeab04a58
88 schema:publisher N01f939df322545028087fa71c1937768
89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122411304
90 https://doi.org/10.1007/978-981-32-9721-0_8
91 schema:sdDatePublished 2022-05-20T07:47
92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
93 schema:sdPublisher N4b999037ec404244864d5fe21c1dcff1
94 schema:url https://doi.org/10.1007/978-981-32-9721-0_8
95 sgo:license sg:explorer/license/
96 sgo:sdDataset chapters
97 rdf:type schema:Chapter
98 N01f939df322545028087fa71c1937768 schema:name Springer Nature
99 rdf:type schema:Organisation
100 N07101283dd394f7aaedf745fbc61f361 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Humans
102 rdf:type schema:DefinedTerm
103 N11e5e06e657145b9a69436debfd827a1 rdf:first sg:person.0701041267.17
104 rdf:rest Nf2c3aa71ad884d2a80deab1d0cea2f43
105 N134038d157304ee9832eab8e9d5f31b8 schema:familyName Kim
106 schema:givenName Yong-Ku
107 rdf:type schema:Person
108 N1364be6cb8034872b4ea3e49c4025aa7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Brain Diseases
110 rdf:type schema:DefinedTerm
111 N2e2d972ec1834b86bb17444979585a41 schema:name doi
112 schema:value 10.1007/978-981-32-9721-0_8
113 rdf:type schema:PropertyValue
114 N4b999037ec404244864d5fe21c1dcff1 schema:name Springer Nature - SN SciGraph project
115 rdf:type schema:Organization
116 N7084bb2d231343e2b8f9146f5c39eb6d rdf:first sg:person.01362642406.55
117 rdf:rest rdf:nil
118 Nad94a87a865649ec89fdf509d81141c9 schema:name dimensions_id
119 schema:value pub.1122411304
120 rdf:type schema:PropertyValue
121 Nb42490cfee8647c8965dc78f1f15b8f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Magnetic Resonance Imaging
123 rdf:type schema:DefinedTerm
124 Nc45d38e81cd941de9ed4b924e0e0f1ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Neural Networks, Computer
126 rdf:type schema:DefinedTerm
127 Nc5531baae2584bbea92566335d450a87 rdf:first N134038d157304ee9832eab8e9d5f31b8
128 rdf:rest rdf:nil
129 Ne4b1e5e285934e80aa61a46aeab04a58 schema:name pubmed_id
130 schema:value 31705494
131 rdf:type schema:PropertyValue
132 Neb279f75ab01480daf53a8c3a3d436e7 schema:isbn 978-981-32-9720-3
133 978-981-32-9721-0
134 schema:name Frontiers in Psychiatry
135 rdf:type schema:Book
136 Nf22e834ad0564dfdafdac9bbd6a4d338 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Brain
138 rdf:type schema:DefinedTerm
139 Nf2c3aa71ad884d2a80deab1d0cea2f43 rdf:first sg:person.0741536706.20
140 rdf:rest N7084bb2d231343e2b8f9146f5c39eb6d
141 Nf8811aaf1f8e4fb5bda619ff8e16854e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Connectome
143 rdf:type schema:DefinedTerm
144 Nfe77c4723c2c4dbaaa59a01bcac0e33e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Linear Models
146 rdf:type schema:DefinedTerm
147 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
148 schema:name Medical and Health Sciences
149 rdf:type schema:DefinedTerm
150 sg:person.01362642406.55 schema:affiliation grid-institutes:grid.5612.0
151 schema:familyName Gilson
152 schema:givenName Matthieu
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362642406.55
154 rdf:type schema:Person
155 sg:person.0701041267.17 schema:affiliation grid-institutes:grid.462486.a
156 schema:familyName Insabato
157 schema:givenName Andrea
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701041267.17
159 rdf:type schema:Person
160 sg:person.0741536706.20 schema:affiliation grid-institutes:grid.5612.0
161 schema:familyName Deco
162 schema:givenName Gustavo
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741536706.20
164 rdf:type schema:Person
165 grid-institutes:grid.462486.a schema:alternateName Institut de Neurosciences de la Timone, UMR CNRS 7289, Aix Marseille University, 13385, Marseille, France
166 schema:name Institut de Neurosciences de la Timone, UMR CNRS 7289, Aix Marseille University, 13385, Marseille, France
167 rdf:type schema:Organization
168 grid-institutes:grid.5612.0 schema:alternateName Institució Catalana de la Recerca i Estudis Avanats (ICREA), Universitat Pompeu Fabra, Barcelona, Spain
169 Theoretical and Computational Neuroscience, Center for Brain and Cognition, Universitat Pompeu Fabra, C\Ramon Trias Fargas, 25–27, 08005, Barcelona, Spain
170 schema:name Institució Catalana de la Recerca i Estudis Avanats (ICREA), Universitat Pompeu Fabra, Barcelona, Spain
171 Theoretical and Computational Neuroscience, Center for Brain and Cognition, Universitat Pompeu Fabra, C\Ramon Trias Fargas, 25–27, 08005, Barcelona, Spain
172 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...