Ontology type: schema:Chapter
2019-11-10
AUTHORSAndrea Insabato , Gustavo Deco , Matthieu Gilson
ABSTRACTNeuroimaging-based personalized medicine is emerging to characterize brain disorders and their evolution at the patient level. In this chapter, we present the most classic methods used to infer large-scale brain connectivity based on functional MRI. We adopt a modeling perspective where every connectivity measure is linked to a specific model that allows to interpret the connectivity estimate. This perspective allows to analyze the quality of retrieved connectivity profiles in terms of modeling error and estimation error. In the first part of the chapter, we present undirected functional connectivity (Pearson’s correlation and MI) and effective connectivity (partial correlation), as well as directed effective connectivity (VAR, MOU, Granger causality, DCM). In addition, some of these measures correspond to fully connected graphs (Pearson’s correlation) while others to sparse ones (MOU, DCM), where the sparsity can come from the integration of functional and structural data. In the second part, we claim that machine learning tools are better suited than null-hypothesis testing to link the estimated connectomes with diagnosis and prognosis of neuropsychiatric diseases. Finally, we propose that linear models and features selection are preferable to more complex and nonlinear tools (when prediction performance is on a par) for building interpretable algorithms to predict clinical variables. More... »
PAGES139-158
Frontiers in Psychiatry
ISBN
978-981-32-9720-3
978-981-32-9721-0
http://scigraph.springernature.com/pub.10.1007/978-981-32-9721-0_8
DOIhttp://dx.doi.org/10.1007/978-981-32-9721-0_8
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1122411304
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/31705494
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Medical and Health Sciences",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Brain",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Brain Diseases",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Connectome",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Humans",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Linear Models",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Magnetic Resonance Imaging",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Neural Networks, Computer",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institut de Neurosciences de la Timone, UMR CNRS 7289, Aix Marseille University, 13385, Marseille, France",
"id": "http://www.grid.ac/institutes/grid.462486.a",
"name": [
"Institut de Neurosciences de la Timone, UMR CNRS 7289, Aix Marseille University, 13385, Marseille, France"
],
"type": "Organization"
},
"familyName": "Insabato",
"givenName": "Andrea",
"id": "sg:person.0701041267.17",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701041267.17"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Instituci\u00f3 Catalana de la Recerca i Estudis Avanats (ICREA), Universitat Pompeu Fabra, Barcelona, Spain",
"id": "http://www.grid.ac/institutes/grid.5612.0",
"name": [
"Instituci\u00f3 Catalana de la Recerca i Estudis Avanats (ICREA), Universitat Pompeu Fabra, Barcelona, Spain"
],
"type": "Organization"
},
"familyName": "Deco",
"givenName": "Gustavo",
"id": "sg:person.0741536706.20",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741536706.20"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Theoretical and Computational Neuroscience, Center for Brain and Cognition, Universitat Pompeu Fabra, C\\Ramon Trias Fargas, 25\u201327, 08005, Barcelona, Spain",
"id": "http://www.grid.ac/institutes/grid.5612.0",
"name": [
"Theoretical and Computational Neuroscience, Center for Brain and Cognition, Universitat Pompeu Fabra, C\\Ramon Trias Fargas, 25\u201327, 08005, Barcelona, Spain"
],
"type": "Organization"
},
"familyName": "Gilson",
"givenName": "Matthieu",
"id": "sg:person.01362642406.55",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362642406.55"
],
"type": "Person"
}
],
"datePublished": "2019-11-10",
"datePublishedReg": "2019-11-10",
"description": "Neuroimaging-based personalized medicine is emerging to characterize brain disorders and their evolution at the patient level. In this chapter, we present the most classic methods used to infer large-scale brain connectivity based on functional MRI. We adopt a modeling perspective where every connectivity measure is linked to a specific model that allows to interpret the connectivity estimate. This perspective allows to analyze the quality of retrieved connectivity profiles in terms of modeling error and estimation error. In the first part of the chapter, we present undirected functional connectivity (Pearson\u2019s correlation and MI) and effective connectivity (partial correlation), as well as directed effective connectivity (VAR, MOU, Granger causality, DCM). In addition, some of these measures correspond to fully connected graphs (Pearson\u2019s correlation) while others to sparse ones (MOU, DCM), where the sparsity can come from the integration of functional and structural data. In the second part, we claim that machine learning tools are better suited than null-hypothesis testing to link the estimated connectomes with diagnosis and prognosis of neuropsychiatric diseases. Finally, we propose that linear models and features selection are preferable to more complex and nonlinear tools (when prediction performance is on a par) for building interpretable algorithms to predict clinical variables.",
"editor": [
{
"familyName": "Kim",
"givenName": "Yong-Ku",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-981-32-9721-0_8",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-981-32-9720-3",
"978-981-32-9721-0"
],
"name": "Frontiers in Psychiatry",
"type": "Book"
},
"keywords": [
"machine learning tools",
"interpretable algorithms",
"feature selection",
"large-scale brain connectivity",
"learning tool",
"sparse ones",
"connectivity",
"modeling perspective",
"classic methods",
"estimation error",
"specific model",
"connected graph",
"connectivity estimates",
"nonlinear tools",
"algorithm",
"tool",
"sparsity",
"graph",
"connectivity measures",
"error",
"brain connectivity",
"connectomics",
"null hypothesis testing",
"undirected functional connectivity",
"integration",
"model",
"effective connectivity",
"personalized medicine",
"second part",
"first part",
"connectome",
"selection",
"connectivity profiles",
"quality",
"linear model",
"perspective",
"data",
"method",
"part",
"chapter",
"one",
"terms",
"measures",
"brain diseases",
"testing",
"structural data",
"brain disorders",
"evolution",
"variables",
"estimates",
"addition",
"understanding",
"patient level",
"functional MRI",
"MRI",
"functional connectivity",
"levels",
"medicine",
"diagnosis",
"profile",
"disease",
"clinical variables",
"neuropsychiatric diseases",
"prognosis",
"disorders"
],
"name": "Imaging Connectomics and the Understanding of Brain Diseases",
"pagination": "139-158",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1122411304"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-981-32-9721-0_8"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"31705494"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-981-32-9721-0_8",
"https://app.dimensions.ai/details/publication/pub.1122411304"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:47",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_393.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-981-32-9721-0_8"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-981-32-9721-0_8'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-981-32-9721-0_8'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-981-32-9721-0_8'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-981-32-9721-0_8'
This table displays all metadata directly associated to this object as RDF triples.
172 TRIPLES
23 PREDICATES
96 URIs
90 LITERALS
15 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-981-32-9721-0_8 | schema:about | N07101283dd394f7aaedf745fbc61f361 |
2 | ″ | ″ | N1364be6cb8034872b4ea3e49c4025aa7 |
3 | ″ | ″ | Nb42490cfee8647c8965dc78f1f15b8f8 |
4 | ″ | ″ | Nc45d38e81cd941de9ed4b924e0e0f1ea |
5 | ″ | ″ | Nf22e834ad0564dfdafdac9bbd6a4d338 |
6 | ″ | ″ | Nf8811aaf1f8e4fb5bda619ff8e16854e |
7 | ″ | ″ | Nfe77c4723c2c4dbaaa59a01bcac0e33e |
8 | ″ | ″ | anzsrc-for:11 |
9 | ″ | schema:author | N11e5e06e657145b9a69436debfd827a1 |
10 | ″ | schema:datePublished | 2019-11-10 |
11 | ″ | schema:datePublishedReg | 2019-11-10 |
12 | ″ | schema:description | Neuroimaging-based personalized medicine is emerging to characterize brain disorders and their evolution at the patient level. In this chapter, we present the most classic methods used to infer large-scale brain connectivity based on functional MRI. We adopt a modeling perspective where every connectivity measure is linked to a specific model that allows to interpret the connectivity estimate. This perspective allows to analyze the quality of retrieved connectivity profiles in terms of modeling error and estimation error. In the first part of the chapter, we present undirected functional connectivity (Pearson’s correlation and MI) and effective connectivity (partial correlation), as well as directed effective connectivity (VAR, MOU, Granger causality, DCM). In addition, some of these measures correspond to fully connected graphs (Pearson’s correlation) while others to sparse ones (MOU, DCM), where the sparsity can come from the integration of functional and structural data. In the second part, we claim that machine learning tools are better suited than null-hypothesis testing to link the estimated connectomes with diagnosis and prognosis of neuropsychiatric diseases. Finally, we propose that linear models and features selection are preferable to more complex and nonlinear tools (when prediction performance is on a par) for building interpretable algorithms to predict clinical variables. |
13 | ″ | schema:editor | Nc5531baae2584bbea92566335d450a87 |
14 | ″ | schema:genre | chapter |
15 | ″ | schema:inLanguage | en |
16 | ″ | schema:isAccessibleForFree | false |
17 | ″ | schema:isPartOf | Neb279f75ab01480daf53a8c3a3d436e7 |
18 | ″ | schema:keywords | MRI |
19 | ″ | ″ | addition |
20 | ″ | ″ | algorithm |
21 | ″ | ″ | brain connectivity |
22 | ″ | ″ | brain diseases |
23 | ″ | ″ | brain disorders |
24 | ″ | ″ | chapter |
25 | ″ | ″ | classic methods |
26 | ″ | ″ | clinical variables |
27 | ″ | ″ | connected graph |
28 | ″ | ″ | connectivity |
29 | ″ | ″ | connectivity estimates |
30 | ″ | ″ | connectivity measures |
31 | ″ | ″ | connectivity profiles |
32 | ″ | ″ | connectome |
33 | ″ | ″ | connectomics |
34 | ″ | ″ | data |
35 | ″ | ″ | diagnosis |
36 | ″ | ″ | disease |
37 | ″ | ″ | disorders |
38 | ″ | ″ | effective connectivity |
39 | ″ | ″ | error |
40 | ″ | ″ | estimates |
41 | ″ | ″ | estimation error |
42 | ″ | ″ | evolution |
43 | ″ | ″ | feature selection |
44 | ″ | ″ | first part |
45 | ″ | ″ | functional MRI |
46 | ″ | ″ | functional connectivity |
47 | ″ | ″ | graph |
48 | ″ | ″ | integration |
49 | ″ | ″ | interpretable algorithms |
50 | ″ | ″ | large-scale brain connectivity |
51 | ″ | ″ | learning tool |
52 | ″ | ″ | levels |
53 | ″ | ″ | linear model |
54 | ″ | ″ | machine learning tools |
55 | ″ | ″ | measures |
56 | ″ | ″ | medicine |
57 | ″ | ″ | method |
58 | ″ | ″ | model |
59 | ″ | ″ | modeling perspective |
60 | ″ | ″ | neuropsychiatric diseases |
61 | ″ | ″ | nonlinear tools |
62 | ″ | ″ | null hypothesis testing |
63 | ″ | ″ | one |
64 | ″ | ″ | part |
65 | ″ | ″ | patient level |
66 | ″ | ″ | personalized medicine |
67 | ″ | ″ | perspective |
68 | ″ | ″ | profile |
69 | ″ | ″ | prognosis |
70 | ″ | ″ | quality |
71 | ″ | ″ | second part |
72 | ″ | ″ | selection |
73 | ″ | ″ | sparse ones |
74 | ″ | ″ | sparsity |
75 | ″ | ″ | specific model |
76 | ″ | ″ | structural data |
77 | ″ | ″ | terms |
78 | ″ | ″ | testing |
79 | ″ | ″ | tool |
80 | ″ | ″ | understanding |
81 | ″ | ″ | undirected functional connectivity |
82 | ″ | ″ | variables |
83 | ″ | schema:name | Imaging Connectomics and the Understanding of Brain Diseases |
84 | ″ | schema:pagination | 139-158 |
85 | ″ | schema:productId | N2e2d972ec1834b86bb17444979585a41 |
86 | ″ | ″ | Nad94a87a865649ec89fdf509d81141c9 |
87 | ″ | ″ | Ne4b1e5e285934e80aa61a46aeab04a58 |
88 | ″ | schema:publisher | N01f939df322545028087fa71c1937768 |
89 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1122411304 |
90 | ″ | ″ | https://doi.org/10.1007/978-981-32-9721-0_8 |
91 | ″ | schema:sdDatePublished | 2022-05-20T07:47 |
92 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
93 | ″ | schema:sdPublisher | N4b999037ec404244864d5fe21c1dcff1 |
94 | ″ | schema:url | https://doi.org/10.1007/978-981-32-9721-0_8 |
95 | ″ | sgo:license | sg:explorer/license/ |
96 | ″ | sgo:sdDataset | chapters |
97 | ″ | rdf:type | schema:Chapter |
98 | N01f939df322545028087fa71c1937768 | schema:name | Springer Nature |
99 | ″ | rdf:type | schema:Organisation |
100 | N07101283dd394f7aaedf745fbc61f361 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
101 | ″ | schema:name | Humans |
102 | ″ | rdf:type | schema:DefinedTerm |
103 | N11e5e06e657145b9a69436debfd827a1 | rdf:first | sg:person.0701041267.17 |
104 | ″ | rdf:rest | Nf2c3aa71ad884d2a80deab1d0cea2f43 |
105 | N134038d157304ee9832eab8e9d5f31b8 | schema:familyName | Kim |
106 | ″ | schema:givenName | Yong-Ku |
107 | ″ | rdf:type | schema:Person |
108 | N1364be6cb8034872b4ea3e49c4025aa7 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
109 | ″ | schema:name | Brain Diseases |
110 | ″ | rdf:type | schema:DefinedTerm |
111 | N2e2d972ec1834b86bb17444979585a41 | schema:name | doi |
112 | ″ | schema:value | 10.1007/978-981-32-9721-0_8 |
113 | ″ | rdf:type | schema:PropertyValue |
114 | N4b999037ec404244864d5fe21c1dcff1 | schema:name | Springer Nature - SN SciGraph project |
115 | ″ | rdf:type | schema:Organization |
116 | N7084bb2d231343e2b8f9146f5c39eb6d | rdf:first | sg:person.01362642406.55 |
117 | ″ | rdf:rest | rdf:nil |
118 | Nad94a87a865649ec89fdf509d81141c9 | schema:name | dimensions_id |
119 | ″ | schema:value | pub.1122411304 |
120 | ″ | rdf:type | schema:PropertyValue |
121 | Nb42490cfee8647c8965dc78f1f15b8f8 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
122 | ″ | schema:name | Magnetic Resonance Imaging |
123 | ″ | rdf:type | schema:DefinedTerm |
124 | Nc45d38e81cd941de9ed4b924e0e0f1ea | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
125 | ″ | schema:name | Neural Networks, Computer |
126 | ″ | rdf:type | schema:DefinedTerm |
127 | Nc5531baae2584bbea92566335d450a87 | rdf:first | N134038d157304ee9832eab8e9d5f31b8 |
128 | ″ | rdf:rest | rdf:nil |
129 | Ne4b1e5e285934e80aa61a46aeab04a58 | schema:name | pubmed_id |
130 | ″ | schema:value | 31705494 |
131 | ″ | rdf:type | schema:PropertyValue |
132 | Neb279f75ab01480daf53a8c3a3d436e7 | schema:isbn | 978-981-32-9720-3 |
133 | ″ | ″ | 978-981-32-9721-0 |
134 | ″ | schema:name | Frontiers in Psychiatry |
135 | ″ | rdf:type | schema:Book |
136 | Nf22e834ad0564dfdafdac9bbd6a4d338 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
137 | ″ | schema:name | Brain |
138 | ″ | rdf:type | schema:DefinedTerm |
139 | Nf2c3aa71ad884d2a80deab1d0cea2f43 | rdf:first | sg:person.0741536706.20 |
140 | ″ | rdf:rest | N7084bb2d231343e2b8f9146f5c39eb6d |
141 | Nf8811aaf1f8e4fb5bda619ff8e16854e | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
142 | ″ | schema:name | Connectome |
143 | ″ | rdf:type | schema:DefinedTerm |
144 | Nfe77c4723c2c4dbaaa59a01bcac0e33e | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
145 | ″ | schema:name | Linear Models |
146 | ″ | rdf:type | schema:DefinedTerm |
147 | anzsrc-for:11 | schema:inDefinedTermSet | anzsrc-for: |
148 | ″ | schema:name | Medical and Health Sciences |
149 | ″ | rdf:type | schema:DefinedTerm |
150 | sg:person.01362642406.55 | schema:affiliation | grid-institutes:grid.5612.0 |
151 | ″ | schema:familyName | Gilson |
152 | ″ | schema:givenName | Matthieu |
153 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362642406.55 |
154 | ″ | rdf:type | schema:Person |
155 | sg:person.0701041267.17 | schema:affiliation | grid-institutes:grid.462486.a |
156 | ″ | schema:familyName | Insabato |
157 | ″ | schema:givenName | Andrea |
158 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701041267.17 |
159 | ″ | rdf:type | schema:Person |
160 | sg:person.0741536706.20 | schema:affiliation | grid-institutes:grid.5612.0 |
161 | ″ | schema:familyName | Deco |
162 | ″ | schema:givenName | Gustavo |
163 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741536706.20 |
164 | ″ | rdf:type | schema:Person |
165 | grid-institutes:grid.462486.a | schema:alternateName | Institut de Neurosciences de la Timone, UMR CNRS 7289, Aix Marseille University, 13385, Marseille, France |
166 | ″ | schema:name | Institut de Neurosciences de la Timone, UMR CNRS 7289, Aix Marseille University, 13385, Marseille, France |
167 | ″ | rdf:type | schema:Organization |
168 | grid-institutes:grid.5612.0 | schema:alternateName | Institució Catalana de la Recerca i Estudis Avanats (ICREA), Universitat Pompeu Fabra, Barcelona, Spain |
169 | ″ | ″ | Theoretical and Computational Neuroscience, Center for Brain and Cognition, Universitat Pompeu Fabra, C\Ramon Trias Fargas, 25–27, 08005, Barcelona, Spain |
170 | ″ | schema:name | Institució Catalana de la Recerca i Estudis Avanats (ICREA), Universitat Pompeu Fabra, Barcelona, Spain |
171 | ″ | ″ | Theoretical and Computational Neuroscience, Center for Brain and Cognition, Universitat Pompeu Fabra, C\Ramon Trias Fargas, 25–27, 08005, Barcelona, Spain |
172 | ″ | rdf:type | schema:Organization |