Ontology type: schema:Chapter
2021-05-26
AUTHORSGourav K. Sharma , Piyush Pant , Prashant K. Jain , Pavan Kumar Kankar , Puneet Tandon
ABSTRACTThe process of deposition in metal additive manufacturing (AM) involves layer-by-layer stacking of material in a defined fashion. The temperature and temperature gradients involved during the deposition decides the final behaviour of the fabricated component. Hence, the temperature of the substrate over which the deposition is made is of equal importance as the temperature of the processing material during deposition. To consider this aspect, a design of heating bed on which the substrate is placed is explored through numerical simulation. In this direction, a thermal and fluid flow analysis for a heating bed is performed in the presented work by adopting the finite volume method (FVM). A 3D steady analysis is carried in ANSYS atmosphere. A heating bed with a specific configuration of cooling channels is simulated, and based on the uniformity of the thermal distribution, deposition region is identified. The presented work could find its probabilistic application in the additive manufacturing, wherein substrate heating is required for isothermal deposition of every layer, so as to ensure less residual stresses and reduced distortions in the final part. More... »
PAGES841-849
Recent Advances in Mechanical Engineering
ISBN
978-981-15-9677-3
978-981-15-9678-0
http://scigraph.springernature.com/pub.10.1007/978-981-15-9678-0_70
DOIhttp://dx.doi.org/10.1007/978-981-15-9678-0_70
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1138330837
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Interdisciplinary Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Mechanical Engineering Discipline, PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, India",
"id": "http://www.grid.ac/institutes/grid.444467.1",
"name": [
"Mechanical Engineering Discipline, PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, India"
],
"type": "Organization"
},
"familyName": "Sharma",
"givenName": "Gourav K.",
"id": "sg:person.014617536107.26",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014617536107.26"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Mechanical Engineering Discipline, PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, India",
"id": "http://www.grid.ac/institutes/grid.444467.1",
"name": [
"Mechanical Engineering Discipline, PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, India"
],
"type": "Organization"
},
"familyName": "Pant",
"givenName": "Piyush",
"id": "sg:person.012645373101.68",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012645373101.68"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Mechanical Engineering Discipline, PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, India",
"id": "http://www.grid.ac/institutes/grid.444467.1",
"name": [
"Mechanical Engineering Discipline, PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, India"
],
"type": "Organization"
},
"familyName": "Jain",
"givenName": "Prashant K.",
"id": "sg:person.011624165357.44",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011624165357.44"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Mechanical Engineering Department, Indian Institute of Technology, Indore, India",
"id": "http://www.grid.ac/institutes/grid.450280.b",
"name": [
"Mechanical Engineering Department, Indian Institute of Technology, Indore, India"
],
"type": "Organization"
},
"familyName": "Kankar",
"givenName": "Pavan Kumar",
"id": "sg:person.011621346722.57",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011621346722.57"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Mechanical Engineering Discipline, PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, India",
"id": "http://www.grid.ac/institutes/grid.444467.1",
"name": [
"Mechanical Engineering Discipline, PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, India"
],
"type": "Organization"
},
"familyName": "Tandon",
"givenName": "Puneet",
"id": "sg:person.013551272440.61",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013551272440.61"
],
"type": "Person"
}
],
"datePublished": "2021-05-26",
"datePublishedReg": "2021-05-26",
"description": "The process of deposition in metal additive manufacturing (AM) involves layer-by-layer stacking of material in a defined fashion. The temperature and temperature gradients involved during the deposition decides the final behaviour of the fabricated component. Hence, the temperature of the substrate over which the deposition is made is of equal importance as the temperature of the processing material during deposition. To consider this aspect, a design of heating bed on which the substrate is placed is explored through numerical simulation. In this direction, a thermal and fluid flow analysis for a heating bed is performed in the presented work by adopting the finite volume method (FVM). A 3D steady analysis is carried in ANSYS atmosphere. A heating bed with a specific configuration of cooling channels is simulated, and based on the uniformity of the thermal distribution, deposition region is identified. The presented work could find its probabilistic application in the additive manufacturing, wherein substrate heating is required for isothermal deposition of every layer, so as to ensure less residual stresses and reduced distortions in the final part.",
"editor": [
{
"familyName": "Kumar",
"givenName": "Anil",
"type": "Person"
},
{
"familyName": "Pal",
"givenName": "Amit",
"type": "Person"
},
{
"familyName": "Kachhwaha",
"givenName": "Surendra Singh",
"type": "Person"
},
{
"familyName": "Jain",
"givenName": "Prashant Kumar",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-981-15-9678-0_70",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-981-15-9677-3",
"978-981-15-9678-0"
],
"name": "Recent Advances in Mechanical Engineering",
"type": "Book"
},
"keywords": [
"finite volume method",
"additive manufacturing",
"heating bed",
"metal additive manufacturing",
"metal AM processes",
"fluid flow analysis",
"fluid flow modelling",
"presented work",
"isothermal deposition",
"AM processes",
"residual stress",
"substrate heating",
"process of deposition",
"volume method",
"steady analysis",
"processing materials",
"flow modelling",
"temperature gradient",
"numerical simulations",
"thermal distribution",
"deposition region",
"reduced distortion",
"flow analysis",
"layer stacking",
"manufacturing",
"final behavior",
"deposition",
"temperature",
"layer",
"probabilistic applications",
"bed",
"specific configuration",
"materials",
"substrate",
"heating",
"applications",
"final part",
"simulations",
"uniformity",
"process",
"work",
"modelling",
"configuration",
"design",
"atmosphere",
"distortion",
"gradient",
"stress",
"behavior",
"stacking",
"direction",
"method",
"channels",
"distribution",
"analysis",
"components",
"equal importance",
"part",
"region",
"defined fashion",
"aspects",
"importance",
"fashion"
],
"name": "Thermal and Fluid Flow Modelling of a Heating Bed for Application in Metal AM Process",
"pagination": "841-849",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1138330837"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-981-15-9678-0_70"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-981-15-9678-0_70",
"https://app.dimensions.ai/details/publication/pub.1138330837"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-06-01T22:34",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_409.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-981-15-9678-0_70"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-981-15-9678-0_70'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-981-15-9678-0_70'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-981-15-9678-0_70'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-981-15-9678-0_70'
This table displays all metadata directly associated to this object as RDF triples.
169 TRIPLES
23 PREDICATES
88 URIs
81 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-981-15-9678-0_70 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0915 |
3 | ″ | schema:author | N9afbf95d7d3c428487bd23454350db9f |
4 | ″ | schema:datePublished | 2021-05-26 |
5 | ″ | schema:datePublishedReg | 2021-05-26 |
6 | ″ | schema:description | The process of deposition in metal additive manufacturing (AM) involves layer-by-layer stacking of material in a defined fashion. The temperature and temperature gradients involved during the deposition decides the final behaviour of the fabricated component. Hence, the temperature of the substrate over which the deposition is made is of equal importance as the temperature of the processing material during deposition. To consider this aspect, a design of heating bed on which the substrate is placed is explored through numerical simulation. In this direction, a thermal and fluid flow analysis for a heating bed is performed in the presented work by adopting the finite volume method (FVM). A 3D steady analysis is carried in ANSYS atmosphere. A heating bed with a specific configuration of cooling channels is simulated, and based on the uniformity of the thermal distribution, deposition region is identified. The presented work could find its probabilistic application in the additive manufacturing, wherein substrate heating is required for isothermal deposition of every layer, so as to ensure less residual stresses and reduced distortions in the final part. |
7 | ″ | schema:editor | N0a2e6f4ddaf4435a8844c9de917388f2 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N986ae75844ae4ccfa22c69a2c6568910 |
12 | ″ | schema:keywords | AM processes |
13 | ″ | ″ | additive manufacturing |
14 | ″ | ″ | analysis |
15 | ″ | ″ | applications |
16 | ″ | ″ | aspects |
17 | ″ | ″ | atmosphere |
18 | ″ | ″ | bed |
19 | ″ | ″ | behavior |
20 | ″ | ″ | channels |
21 | ″ | ″ | components |
22 | ″ | ″ | configuration |
23 | ″ | ″ | defined fashion |
24 | ″ | ″ | deposition |
25 | ″ | ″ | deposition region |
26 | ″ | ″ | design |
27 | ″ | ″ | direction |
28 | ″ | ″ | distortion |
29 | ″ | ″ | distribution |
30 | ″ | ″ | equal importance |
31 | ″ | ″ | fashion |
32 | ″ | ″ | final behavior |
33 | ″ | ″ | final part |
34 | ″ | ″ | finite volume method |
35 | ″ | ″ | flow analysis |
36 | ″ | ″ | flow modelling |
37 | ″ | ″ | fluid flow analysis |
38 | ″ | ″ | fluid flow modelling |
39 | ″ | ″ | gradient |
40 | ″ | ″ | heating |
41 | ″ | ″ | heating bed |
42 | ″ | ″ | importance |
43 | ″ | ″ | isothermal deposition |
44 | ″ | ″ | layer |
45 | ″ | ″ | layer stacking |
46 | ″ | ″ | manufacturing |
47 | ″ | ″ | materials |
48 | ″ | ″ | metal AM processes |
49 | ″ | ″ | metal additive manufacturing |
50 | ″ | ″ | method |
51 | ″ | ″ | modelling |
52 | ″ | ″ | numerical simulations |
53 | ″ | ″ | part |
54 | ″ | ″ | presented work |
55 | ″ | ″ | probabilistic applications |
56 | ″ | ″ | process |
57 | ″ | ″ | process of deposition |
58 | ″ | ″ | processing materials |
59 | ″ | ″ | reduced distortion |
60 | ″ | ″ | region |
61 | ″ | ″ | residual stress |
62 | ″ | ″ | simulations |
63 | ″ | ″ | specific configuration |
64 | ″ | ″ | stacking |
65 | ″ | ″ | steady analysis |
66 | ″ | ″ | stress |
67 | ″ | ″ | substrate |
68 | ″ | ″ | substrate heating |
69 | ″ | ″ | temperature |
70 | ″ | ″ | temperature gradient |
71 | ″ | ″ | thermal distribution |
72 | ″ | ″ | uniformity |
73 | ″ | ″ | volume method |
74 | ″ | ″ | work |
75 | ″ | schema:name | Thermal and Fluid Flow Modelling of a Heating Bed for Application in Metal AM Process |
76 | ″ | schema:pagination | 841-849 |
77 | ″ | schema:productId | N6f952e389b454238b27ce1dc2d52969b |
78 | ″ | ″ | N8b0e03516b3a4b70a56ea0431ab0765e |
79 | ″ | schema:publisher | N586a215a7e8a49b5961ba8c5e49ce5fc |
80 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1138330837 |
81 | ″ | ″ | https://doi.org/10.1007/978-981-15-9678-0_70 |
82 | ″ | schema:sdDatePublished | 2022-06-01T22:34 |
83 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
84 | ″ | schema:sdPublisher | N719995af0d7d4a769725eb1bd1185d72 |
85 | ″ | schema:url | https://doi.org/10.1007/978-981-15-9678-0_70 |
86 | ″ | sgo:license | sg:explorer/license/ |
87 | ″ | sgo:sdDataset | chapters |
88 | ″ | rdf:type | schema:Chapter |
89 | N0a2e6f4ddaf4435a8844c9de917388f2 | rdf:first | N9224f319b0c24255ade906490a8a6bba |
90 | ″ | rdf:rest | Nfdf27906b08d4b1bb007805f9eeaeabb |
91 | N16c65a48069940df822c9cb817574d16 | schema:familyName | Kachhwaha |
92 | ″ | schema:givenName | Surendra Singh |
93 | ″ | rdf:type | schema:Person |
94 | N300ede72f5504b1f97f6488c6f502ab3 | rdf:first | N16c65a48069940df822c9cb817574d16 |
95 | ″ | rdf:rest | N7fa6fa9d5cde43f2b3da37c0cf6f577c |
96 | N3afa3eba591146a3b2d6c33fa1e4473a | rdf:first | sg:person.012645373101.68 |
97 | ″ | rdf:rest | N49cd95d66d814f47ba258183ce3e20c4 |
98 | N44573d2fdaf440d5b570136475ab1fa6 | schema:familyName | Jain |
99 | ″ | schema:givenName | Prashant Kumar |
100 | ″ | rdf:type | schema:Person |
101 | N49cd95d66d814f47ba258183ce3e20c4 | rdf:first | sg:person.011624165357.44 |
102 | ″ | rdf:rest | N97153454f0104955ab9994d3a61e09d3 |
103 | N586a215a7e8a49b5961ba8c5e49ce5fc | schema:name | Springer Nature |
104 | ″ | rdf:type | schema:Organisation |
105 | N648dc8bd2ab94824b4e3641f5fc83cf5 | rdf:first | sg:person.013551272440.61 |
106 | ″ | rdf:rest | rdf:nil |
107 | N6f952e389b454238b27ce1dc2d52969b | schema:name | dimensions_id |
108 | ″ | schema:value | pub.1138330837 |
109 | ″ | rdf:type | schema:PropertyValue |
110 | N719995af0d7d4a769725eb1bd1185d72 | schema:name | Springer Nature - SN SciGraph project |
111 | ″ | rdf:type | schema:Organization |
112 | N7fa6fa9d5cde43f2b3da37c0cf6f577c | rdf:first | N44573d2fdaf440d5b570136475ab1fa6 |
113 | ″ | rdf:rest | rdf:nil |
114 | N8b0e03516b3a4b70a56ea0431ab0765e | schema:name | doi |
115 | ″ | schema:value | 10.1007/978-981-15-9678-0_70 |
116 | ″ | rdf:type | schema:PropertyValue |
117 | N9224f319b0c24255ade906490a8a6bba | schema:familyName | Kumar |
118 | ″ | schema:givenName | Anil |
119 | ″ | rdf:type | schema:Person |
120 | N97153454f0104955ab9994d3a61e09d3 | rdf:first | sg:person.011621346722.57 |
121 | ″ | rdf:rest | N648dc8bd2ab94824b4e3641f5fc83cf5 |
122 | N986ae75844ae4ccfa22c69a2c6568910 | schema:isbn | 978-981-15-9677-3 |
123 | ″ | ″ | 978-981-15-9678-0 |
124 | ″ | schema:name | Recent Advances in Mechanical Engineering |
125 | ″ | rdf:type | schema:Book |
126 | N9afbf95d7d3c428487bd23454350db9f | rdf:first | sg:person.014617536107.26 |
127 | ″ | rdf:rest | N3afa3eba591146a3b2d6c33fa1e4473a |
128 | Ne57406ecf4f147078286e06e1775030c | schema:familyName | Pal |
129 | ″ | schema:givenName | Amit |
130 | ″ | rdf:type | schema:Person |
131 | Nfdf27906b08d4b1bb007805f9eeaeabb | rdf:first | Ne57406ecf4f147078286e06e1775030c |
132 | ″ | rdf:rest | N300ede72f5504b1f97f6488c6f502ab3 |
133 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
134 | ″ | schema:name | Engineering |
135 | ″ | rdf:type | schema:DefinedTerm |
136 | anzsrc-for:0915 | schema:inDefinedTermSet | anzsrc-for: |
137 | ″ | schema:name | Interdisciplinary Engineering |
138 | ″ | rdf:type | schema:DefinedTerm |
139 | sg:person.011621346722.57 | schema:affiliation | grid-institutes:grid.450280.b |
140 | ″ | schema:familyName | Kankar |
141 | ″ | schema:givenName | Pavan Kumar |
142 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011621346722.57 |
143 | ″ | rdf:type | schema:Person |
144 | sg:person.011624165357.44 | schema:affiliation | grid-institutes:grid.444467.1 |
145 | ″ | schema:familyName | Jain |
146 | ″ | schema:givenName | Prashant K. |
147 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011624165357.44 |
148 | ″ | rdf:type | schema:Person |
149 | sg:person.012645373101.68 | schema:affiliation | grid-institutes:grid.444467.1 |
150 | ″ | schema:familyName | Pant |
151 | ″ | schema:givenName | Piyush |
152 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012645373101.68 |
153 | ″ | rdf:type | schema:Person |
154 | sg:person.013551272440.61 | schema:affiliation | grid-institutes:grid.444467.1 |
155 | ″ | schema:familyName | Tandon |
156 | ″ | schema:givenName | Puneet |
157 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013551272440.61 |
158 | ″ | rdf:type | schema:Person |
159 | sg:person.014617536107.26 | schema:affiliation | grid-institutes:grid.444467.1 |
160 | ″ | schema:familyName | Sharma |
161 | ″ | schema:givenName | Gourav K. |
162 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014617536107.26 |
163 | ″ | rdf:type | schema:Person |
164 | grid-institutes:grid.444467.1 | schema:alternateName | Mechanical Engineering Discipline, PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, India |
165 | ″ | schema:name | Mechanical Engineering Discipline, PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, India |
166 | ″ | rdf:type | schema:Organization |
167 | grid-institutes:grid.450280.b | schema:alternateName | Mechanical Engineering Department, Indian Institute of Technology, Indore, India |
168 | ″ | schema:name | Mechanical Engineering Department, Indian Institute of Technology, Indore, India |
169 | ″ | rdf:type | schema:Organization |