Construction-Based Secret Image Sharing View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2020-07-01

AUTHORS

Xuehu Yan , Guozheng Yang , Lanlan Qi , Jingju Liu , Yuliang Lu

ABSTRACT

Most secret image sharing (SIS) schemes output noise-like shadows and are fragile to any noise due to their restoring methods are based on mathematical operations. A noise-like shadow increases the suspicion of an attacker and the fragileness leads to the secret pixel is wrongly restored even if a bit error occurs. In this paper, we propose a construction-based SIS (CSIS) scheme for a (k, n)-threshold based on quick response (QR) code and the principle of polynomial-based SIS. In the proposed CSIS, each output shadow is a valid QR code, which is thus comprehensible and robust to typical noises. The secret image is losslessly restored by barcode scanning operation and Lagrange interpolation with any k or more shadows. The comprehensible shadow not only reduces the suspicion of an attacker but also improves the management efficiency of shadows. The robustness makes the proposed scheme applicable to noisy channel when transmitting shadows. We provide experiments to validate the proposed scheme. More... »

PAGES

611-623

Book

TITLE

Proceedings of the 9th International Conference on Computer Engineering and Networks

ISBN

978-981-15-3752-3
978-981-15-3753-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-981-15-3753-0_60

DOI

http://dx.doi.org/10.1007/978-981-15-3753-0_60

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1128882742


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National University of Defense Technology, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.412110.7", 
          "name": [
            "National University of Defense Technology, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Xuehu", 
        "id": "sg:person.010467364517.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467364517.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Defense Technology, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.412110.7", 
          "name": [
            "National University of Defense Technology, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Guozheng", 
        "id": "sg:person.011516666750.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011516666750.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Defense Technology, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.412110.7", 
          "name": [
            "National University of Defense Technology, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qi", 
        "givenName": "Lanlan", 
        "id": "sg:person.012653340127.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012653340127.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Defense Technology, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.412110.7", 
          "name": [
            "National University of Defense Technology, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jingju", 
        "id": "sg:person.014533527122.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014533527122.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Defense Technology, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.412110.7", 
          "name": [
            "National University of Defense Technology, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Yuliang", 
        "id": "sg:person.015112370271.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015112370271.93"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2020-07-01", 
    "datePublishedReg": "2020-07-01", 
    "description": "Most secret image sharing (SIS) schemes output noise-like shadows and are fragile to any noise due to their restoring methods are based on mathematical operations. A noise-like shadow increases the suspicion of an attacker and the fragileness leads to the secret pixel is wrongly restored even if a bit error occurs. In this paper, we propose a construction-based SIS (CSIS) scheme for a (k, n)-threshold based on quick response (QR) code and the principle of polynomial-based SIS. In the proposed CSIS, each output shadow is a valid QR code, which is thus comprehensible and robust to typical noises. The secret image is losslessly restored by barcode scanning operation and Lagrange interpolation with any k or more shadows. The comprehensible shadow not only reduces the suspicion of an attacker but also improves the management efficiency of shadows. The robustness makes the proposed scheme applicable to noisy channel when transmitting shadows. We provide experiments to validate the proposed scheme.", 
    "editor": [
      {
        "familyName": "Liu", 
        "givenName": "Qi", 
        "type": "Person"
      }, 
      {
        "familyName": "Liu", 
        "givenName": "Xiaodong", 
        "type": "Person"
      }, 
      {
        "familyName": "Li", 
        "givenName": "Lang", 
        "type": "Person"
      }, 
      {
        "familyName": "Zhou", 
        "givenName": "Huiyu", 
        "type": "Person"
      }, 
      {
        "familyName": "Zhao", 
        "givenName": "Hui-Huang", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-981-15-3753-0_60", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-981-15-3752-3", 
        "978-981-15-3753-0"
      ], 
      "name": "Proceedings of the 9th International Conference on Computer Engineering and Networks", 
      "type": "Book"
    }, 
    "keywords": [
      "polynomial-based secret image sharing", 
      "secret image sharing", 
      "scanning operation", 
      "typical noise", 
      "restoring method", 
      "image sharing", 
      "noise-like shadows", 
      "operation", 
      "noise", 
      "mathematical operations", 
      "scheme", 
      "valid QR code", 
      "Lagrange interpolation", 
      "quick response code", 
      "secret pixels", 
      "SIS schemes", 
      "secret image", 
      "fragileness", 
      "QR code", 
      "efficiency", 
      "robustness", 
      "more shadows", 
      "noisy channels", 
      "response codes", 
      "code", 
      "management efficiency", 
      "attacker", 
      "bit errors", 
      "interpolation", 
      "error", 
      "pixels", 
      "sharing", 
      "method", 
      "experiments", 
      "channels", 
      "shadow", 
      "images", 
      "principles", 
      "threshold", 
      "CSIs", 
      "suspicion", 
      "paper"
    ], 
    "name": "Construction-Based Secret Image Sharing", 
    "pagination": "611-623", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1128882742"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-981-15-3753-0_60"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-981-15-3753-0_60", 
      "https://app.dimensions.ai/details/publication/pub.1128882742"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_1.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-981-15-3753-0_60"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-981-15-3753-0_60'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-981-15-3753-0_60'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-981-15-3753-0_60'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-981-15-3753-0_60'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      22 PREDICATES      66 URIs      59 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-981-15-3753-0_60 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Na11e1cfa67eb491d9e0b6cf7638cac9b
4 schema:datePublished 2020-07-01
5 schema:datePublishedReg 2020-07-01
6 schema:description Most secret image sharing (SIS) schemes output noise-like shadows and are fragile to any noise due to their restoring methods are based on mathematical operations. A noise-like shadow increases the suspicion of an attacker and the fragileness leads to the secret pixel is wrongly restored even if a bit error occurs. In this paper, we propose a construction-based SIS (CSIS) scheme for a (k, n)-threshold based on quick response (QR) code and the principle of polynomial-based SIS. In the proposed CSIS, each output shadow is a valid QR code, which is thus comprehensible and robust to typical noises. The secret image is losslessly restored by barcode scanning operation and Lagrange interpolation with any k or more shadows. The comprehensible shadow not only reduces the suspicion of an attacker but also improves the management efficiency of shadows. The robustness makes the proposed scheme applicable to noisy channel when transmitting shadows. We provide experiments to validate the proposed scheme.
7 schema:editor Naddab3cd8bef42c78ded079c4670835c
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N05402f7a052a455aae118480c5199813
11 schema:keywords CSIs
12 Lagrange interpolation
13 QR code
14 SIS schemes
15 attacker
16 bit errors
17 channels
18 code
19 efficiency
20 error
21 experiments
22 fragileness
23 image sharing
24 images
25 interpolation
26 management efficiency
27 mathematical operations
28 method
29 more shadows
30 noise
31 noise-like shadows
32 noisy channels
33 operation
34 paper
35 pixels
36 polynomial-based secret image sharing
37 principles
38 quick response code
39 response codes
40 restoring method
41 robustness
42 scanning operation
43 scheme
44 secret image
45 secret image sharing
46 secret pixels
47 shadow
48 sharing
49 suspicion
50 threshold
51 typical noise
52 valid QR code
53 schema:name Construction-Based Secret Image Sharing
54 schema:pagination 611-623
55 schema:productId N31188a5e97cf4690bc14ef6a9bf9efcd
56 N475fbaa5e01b4b31a7e223e7db586cff
57 schema:publisher N924f246f7b0c420b9f436672c506a755
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128882742
59 https://doi.org/10.1007/978-981-15-3753-0_60
60 schema:sdDatePublished 2022-12-01T06:46
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N1ec988486356443491306f2c48ce5d92
63 schema:url https://doi.org/10.1007/978-981-15-3753-0_60
64 sgo:license sg:explorer/license/
65 sgo:sdDataset chapters
66 rdf:type schema:Chapter
67 N05402f7a052a455aae118480c5199813 schema:isbn 978-981-15-3752-3
68 978-981-15-3753-0
69 schema:name Proceedings of the 9th International Conference on Computer Engineering and Networks
70 rdf:type schema:Book
71 N1ec988486356443491306f2c48ce5d92 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N31188a5e97cf4690bc14ef6a9bf9efcd schema:name dimensions_id
74 schema:value pub.1128882742
75 rdf:type schema:PropertyValue
76 N475fbaa5e01b4b31a7e223e7db586cff schema:name doi
77 schema:value 10.1007/978-981-15-3753-0_60
78 rdf:type schema:PropertyValue
79 N4c7db104183d47d99ceb1e1aea34e326 schema:familyName Zhou
80 schema:givenName Huiyu
81 rdf:type schema:Person
82 N5e4b43d7135b4713b396fd67abea3576 rdf:first Ne473a5e621f24082b6fb4a00c4919d4d
83 rdf:rest Nbf0e2133f0294694be37705d0e56c7af
84 N6c46ca2a9f934a4c954d0c0a59dede05 schema:familyName Liu
85 schema:givenName Xiaodong
86 rdf:type schema:Person
87 N796d82bfb02341a285783984a9bb7dc1 rdf:first sg:person.011516666750.26
88 rdf:rest N9b68e1b712c54dcebbdcd498f74b8892
89 N7b6ceaefcc614816abef16079ef39c97 schema:familyName Zhao
90 schema:givenName Hui-Huang
91 rdf:type schema:Person
92 N924f246f7b0c420b9f436672c506a755 schema:name Springer Nature
93 rdf:type schema:Organisation
94 N9b68e1b712c54dcebbdcd498f74b8892 rdf:first sg:person.012653340127.33
95 rdf:rest Nccea9ab1fd7f44099f24ad0129376e31
96 Na11e1cfa67eb491d9e0b6cf7638cac9b rdf:first sg:person.010467364517.31
97 rdf:rest N796d82bfb02341a285783984a9bb7dc1
98 Na7c26b57ed0748a6ba89815120236591 rdf:first sg:person.015112370271.93
99 rdf:rest rdf:nil
100 Naddab3cd8bef42c78ded079c4670835c rdf:first Nd9bf93ed1363417aad28e5ec66433857
101 rdf:rest Nb43d00bb5c604a679303d472efee509d
102 Nae9975964c3e4602a706ae6f19fa6364 rdf:first N7b6ceaefcc614816abef16079ef39c97
103 rdf:rest rdf:nil
104 Nb43d00bb5c604a679303d472efee509d rdf:first N6c46ca2a9f934a4c954d0c0a59dede05
105 rdf:rest N5e4b43d7135b4713b396fd67abea3576
106 Nbf0e2133f0294694be37705d0e56c7af rdf:first N4c7db104183d47d99ceb1e1aea34e326
107 rdf:rest Nae9975964c3e4602a706ae6f19fa6364
108 Nccea9ab1fd7f44099f24ad0129376e31 rdf:first sg:person.014533527122.18
109 rdf:rest Na7c26b57ed0748a6ba89815120236591
110 Nd9bf93ed1363417aad28e5ec66433857 schema:familyName Liu
111 schema:givenName Qi
112 rdf:type schema:Person
113 Ne473a5e621f24082b6fb4a00c4919d4d schema:familyName Li
114 schema:givenName Lang
115 rdf:type schema:Person
116 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
117 schema:name Information and Computing Sciences
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
120 schema:name Artificial Intelligence and Image Processing
121 rdf:type schema:DefinedTerm
122 sg:person.010467364517.31 schema:affiliation grid-institutes:grid.412110.7
123 schema:familyName Yan
124 schema:givenName Xuehu
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467364517.31
126 rdf:type schema:Person
127 sg:person.011516666750.26 schema:affiliation grid-institutes:grid.412110.7
128 schema:familyName Yang
129 schema:givenName Guozheng
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011516666750.26
131 rdf:type schema:Person
132 sg:person.012653340127.33 schema:affiliation grid-institutes:grid.412110.7
133 schema:familyName Qi
134 schema:givenName Lanlan
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012653340127.33
136 rdf:type schema:Person
137 sg:person.014533527122.18 schema:affiliation grid-institutes:grid.412110.7
138 schema:familyName Liu
139 schema:givenName Jingju
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014533527122.18
141 rdf:type schema:Person
142 sg:person.015112370271.93 schema:affiliation grid-institutes:grid.412110.7
143 schema:familyName Lu
144 schema:givenName Yuliang
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015112370271.93
146 rdf:type schema:Person
147 grid-institutes:grid.412110.7 schema:alternateName National University of Defense Technology, Hefei, China
148 schema:name National University of Defense Technology, Hefei, China
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...