2020-08-22
AUTHORSHarekrushna Behera , Jun-Li Hou
ABSTRACTNatural ion transporters are membrane-bound proteins that play a vital role in many complex biological processes. Malfunction of these proteins is closely associated with various life-threatening diseases called channelopathies. Significant efforts have been devoted to develop transporter replacement therapies that can alleviate the symptoms of channelopathies caused by these faulty proteins. However, due to instability of proteins, much attention has been given to synthesize stable artificial ion transporters that could mimic the function of natural ion transporters. Macrocycle-based ion channels remain much attractive as it has defined cavity to accommodate specific ions and functional group diversity could be easily prepared to mimic the specific function of natural proteins. Hence, this chapter is focused on synthetic ion transporters derived from various macrocycles that transport ions through either unimolecular channels or supramolecular self-assembled channels through non-covalent interactions across the lipid bilayer. An overview of engineering of macrocycles to obtain internally functionalized channels for tuning their ion selectivity has been given. The macrocycle-based ion channels discussed are derived from cyclic peptides, crown ethers, pillar[n]arene, calix[n]arene, resorcin[n]arene, cyclodextrin, hydrazide, organic cages, and metal organic framework units. More... »
PAGES1519-1554
Handbook of Macrocyclic Supramolecular Assembly
ISBN
978-981-15-2685-5
978-981-15-2686-2
http://scigraph.springernature.com/pub.10.1007/978-981-15-2686-2_64
DOIhttp://dx.doi.org/10.1007/978-981-15-2686-2_64
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1130263878
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Other Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0305",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Organic Chemistry",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biochemistry and Cell Biology",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Chemistry, Fudan University, Shanghai, China",
"id": "http://www.grid.ac/institutes/grid.8547.e",
"name": [
"Department of Chemistry, Fudan University, Shanghai, China"
],
"type": "Organization"
},
"familyName": "Behera",
"givenName": "Harekrushna",
"id": "sg:person.0623256321.27",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623256321.27"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Chemistry, Fudan University, Shanghai, China",
"id": "http://www.grid.ac/institutes/grid.8547.e",
"name": [
"Department of Chemistry, Fudan University, Shanghai, China"
],
"type": "Organization"
},
"familyName": "Hou",
"givenName": "Jun-Li",
"id": "sg:person.01210476001.51",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210476001.51"
],
"type": "Person"
}
],
"datePublished": "2020-08-22",
"datePublishedReg": "2020-08-22",
"description": "Natural ion transporters are membrane-bound proteins that play a vital role in many complex biological processes. Malfunction of these proteins is closely associated with various life-threatening diseases called channelopathies. Significant efforts have been devoted to develop transporter replacement therapies that can alleviate the symptoms of channelopathies caused by these faulty proteins. However, due to instability of proteins, much attention has been given to synthesize stable artificial ion transporters that could mimic the function of natural ion transporters. Macrocycle-based ion channels remain much attractive as it has defined cavity to accommodate specific ions and functional group diversity could be easily prepared to mimic the specific function of natural proteins. Hence, this chapter is focused on synthetic ion transporters derived from various macrocycles that transport ions through either unimolecular channels or supramolecular self-assembled channels through non-covalent interactions across the lipid bilayer. An overview of engineering of macrocycles to obtain internally functionalized channels for tuning their ion selectivity has been given. The macrocycle-based ion channels discussed are derived from cyclic peptides, crown ethers, pillar[n]arene, calix[n]arene, resorcin[n]arene, cyclodextrin, hydrazide, organic cages, and metal organic framework units.",
"editor": [
{
"familyName": "Liu",
"givenName": "Yu",
"type": "Person"
},
{
"familyName": "Chen",
"givenName": "Yong",
"type": "Person"
},
{
"familyName": "Zhang",
"givenName": "Heng-Yi",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-981-15-2686-2_64",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-981-15-2685-5",
"978-981-15-2686-2"
],
"name": "Handbook of Macrocyclic Supramolecular Assembly",
"type": "Book"
},
"keywords": [
"self-assembled channels",
"synthetic ion channels",
"synthetic ion transporters",
"non-covalent interactions",
"instability of proteins",
"organic cages",
"crown ethers",
"unimolecular channels",
"cyclic peptides",
"specific ions",
"ion selectivity",
"lipid bilayers",
"macrocycles",
"natural proteins",
"framework units",
"functional group diversity",
"ions",
"ion channels",
"overview of engineering",
"membrane-bound proteins",
"cyclodextrin",
"hydrazide",
"selectivity",
"ether",
"biological processes",
"bilayers",
"complex biological processes",
"significant efforts",
"ion transporters",
"peptides",
"cages",
"interaction",
"vital role",
"protein",
"group diversity",
"units",
"specific functions",
"channels",
"engineering",
"process",
"faulty proteins",
"cavity",
"overview",
"transporters",
"chapter",
"attention",
"function",
"life-threatening disease",
"channelopathies",
"role",
"diversity",
"instability",
"efforts",
"disease",
"malfunction",
"therapy",
"replacement therapy",
"symptoms"
],
"name": "Macrocycle-Based Synthetic Ion Channels",
"pagination": "1519-1554",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1130263878"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-981-15-2686-2_64"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-981-15-2686-2_64",
"https://app.dimensions.ai/details/publication/pub.1130263878"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-06-01T22:31",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_285.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-981-15-2686-2_64"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-981-15-2686-2_64'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-981-15-2686-2_64'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-981-15-2686-2_64'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-981-15-2686-2_64'
This table displays all metadata directly associated to this object as RDF triples.
151 TRIPLES
23 PREDICATES
86 URIs
75 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-981-15-2686-2_64 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0299 |
3 | ″ | ″ | anzsrc-for:03 |
4 | ″ | ″ | anzsrc-for:0305 |
5 | ″ | ″ | anzsrc-for:06 |
6 | ″ | ″ | anzsrc-for:0601 |
7 | ″ | schema:author | Nb9bf410e32bc43afacda2951990904b7 |
8 | ″ | schema:datePublished | 2020-08-22 |
9 | ″ | schema:datePublishedReg | 2020-08-22 |
10 | ″ | schema:description | Natural ion transporters are membrane-bound proteins that play a vital role in many complex biological processes. Malfunction of these proteins is closely associated with various life-threatening diseases called channelopathies. Significant efforts have been devoted to develop transporter replacement therapies that can alleviate the symptoms of channelopathies caused by these faulty proteins. However, due to instability of proteins, much attention has been given to synthesize stable artificial ion transporters that could mimic the function of natural ion transporters. Macrocycle-based ion channels remain much attractive as it has defined cavity to accommodate specific ions and functional group diversity could be easily prepared to mimic the specific function of natural proteins. Hence, this chapter is focused on synthetic ion transporters derived from various macrocycles that transport ions through either unimolecular channels or supramolecular self-assembled channels through non-covalent interactions across the lipid bilayer. An overview of engineering of macrocycles to obtain internally functionalized channels for tuning their ion selectivity has been given. The macrocycle-based ion channels discussed are derived from cyclic peptides, crown ethers, pillar[n]arene, calix[n]arene, resorcin[n]arene, cyclodextrin, hydrazide, organic cages, and metal organic framework units. |
11 | ″ | schema:editor | N15e8b012b48542b0b42082ce68d4111a |
12 | ″ | schema:genre | chapter |
13 | ″ | schema:inLanguage | en |
14 | ″ | schema:isAccessibleForFree | false |
15 | ″ | schema:isPartOf | N349f97207e0b4ee693f324565637b3b1 |
16 | ″ | schema:keywords | attention |
17 | ″ | ″ | bilayers |
18 | ″ | ″ | biological processes |
19 | ″ | ″ | cages |
20 | ″ | ″ | cavity |
21 | ″ | ″ | channelopathies |
22 | ″ | ″ | channels |
23 | ″ | ″ | chapter |
24 | ″ | ″ | complex biological processes |
25 | ″ | ″ | crown ethers |
26 | ″ | ″ | cyclic peptides |
27 | ″ | ″ | cyclodextrin |
28 | ″ | ″ | disease |
29 | ″ | ″ | diversity |
30 | ″ | ″ | efforts |
31 | ″ | ″ | engineering |
32 | ″ | ″ | ether |
33 | ″ | ″ | faulty proteins |
34 | ″ | ″ | framework units |
35 | ″ | ″ | function |
36 | ″ | ″ | functional group diversity |
37 | ″ | ″ | group diversity |
38 | ″ | ″ | hydrazide |
39 | ″ | ″ | instability |
40 | ″ | ″ | instability of proteins |
41 | ″ | ″ | interaction |
42 | ″ | ″ | ion channels |
43 | ″ | ″ | ion selectivity |
44 | ″ | ″ | ion transporters |
45 | ″ | ″ | ions |
46 | ″ | ″ | life-threatening disease |
47 | ″ | ″ | lipid bilayers |
48 | ″ | ″ | macrocycles |
49 | ″ | ″ | malfunction |
50 | ″ | ″ | membrane-bound proteins |
51 | ″ | ″ | natural proteins |
52 | ″ | ″ | non-covalent interactions |
53 | ″ | ″ | organic cages |
54 | ″ | ″ | overview |
55 | ″ | ″ | overview of engineering |
56 | ″ | ″ | peptides |
57 | ″ | ″ | process |
58 | ″ | ″ | protein |
59 | ″ | ″ | replacement therapy |
60 | ″ | ″ | role |
61 | ″ | ″ | selectivity |
62 | ″ | ″ | self-assembled channels |
63 | ″ | ″ | significant efforts |
64 | ″ | ″ | specific functions |
65 | ″ | ″ | specific ions |
66 | ″ | ″ | symptoms |
67 | ″ | ″ | synthetic ion channels |
68 | ″ | ″ | synthetic ion transporters |
69 | ″ | ″ | therapy |
70 | ″ | ″ | transporters |
71 | ″ | ″ | unimolecular channels |
72 | ″ | ″ | units |
73 | ″ | ″ | vital role |
74 | ″ | schema:name | Macrocycle-Based Synthetic Ion Channels |
75 | ″ | schema:pagination | 1519-1554 |
76 | ″ | schema:productId | N8a0c77f8264a49658afe383fe20345c7 |
77 | ″ | ″ | Nac56fded00f143748748c739605dd253 |
78 | ″ | schema:publisher | N2a9406b7294e44709edb2b45006aa810 |
79 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1130263878 |
80 | ″ | ″ | https://doi.org/10.1007/978-981-15-2686-2_64 |
81 | ″ | schema:sdDatePublished | 2022-06-01T22:31 |
82 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
83 | ″ | schema:sdPublisher | Ne4f55faccf0741edb1cc181c92b55273 |
84 | ″ | schema:url | https://doi.org/10.1007/978-981-15-2686-2_64 |
85 | ″ | sgo:license | sg:explorer/license/ |
86 | ″ | sgo:sdDataset | chapters |
87 | ″ | rdf:type | schema:Chapter |
88 | N15e8b012b48542b0b42082ce68d4111a | rdf:first | Ncbfcef4dfe2c40dea11ead9bece80059 |
89 | ″ | rdf:rest | N92da26248ee34083b090c3620b44e682 |
90 | N2a9406b7294e44709edb2b45006aa810 | schema:name | Springer Nature |
91 | ″ | rdf:type | schema:Organisation |
92 | N349f97207e0b4ee693f324565637b3b1 | schema:isbn | 978-981-15-2685-5 |
93 | ″ | ″ | 978-981-15-2686-2 |
94 | ″ | schema:name | Handbook of Macrocyclic Supramolecular Assembly |
95 | ″ | rdf:type | schema:Book |
96 | N6433c80a1b4f4ca0aa8618e52be014f3 | schema:familyName | Chen |
97 | ″ | schema:givenName | Yong |
98 | ″ | rdf:type | schema:Person |
99 | N8a0c77f8264a49658afe383fe20345c7 | schema:name | dimensions_id |
100 | ″ | schema:value | pub.1130263878 |
101 | ″ | rdf:type | schema:PropertyValue |
102 | N92da26248ee34083b090c3620b44e682 | rdf:first | N6433c80a1b4f4ca0aa8618e52be014f3 |
103 | ″ | rdf:rest | N94b2fa41065b4a488ad0d4a16588dc6a |
104 | N94b2fa41065b4a488ad0d4a16588dc6a | rdf:first | N9f099bc21b154b1ea7af5c5e066f3225 |
105 | ″ | rdf:rest | rdf:nil |
106 | N9f099bc21b154b1ea7af5c5e066f3225 | schema:familyName | Zhang |
107 | ″ | schema:givenName | Heng-Yi |
108 | ″ | rdf:type | schema:Person |
109 | Nac56fded00f143748748c739605dd253 | schema:name | doi |
110 | ″ | schema:value | 10.1007/978-981-15-2686-2_64 |
111 | ″ | rdf:type | schema:PropertyValue |
112 | Nb9bf410e32bc43afacda2951990904b7 | rdf:first | sg:person.0623256321.27 |
113 | ″ | rdf:rest | Nf382e30db5764f3c8cef43088d5c0fe7 |
114 | Ncbfcef4dfe2c40dea11ead9bece80059 | schema:familyName | Liu |
115 | ″ | schema:givenName | Yu |
116 | ″ | rdf:type | schema:Person |
117 | Ne4f55faccf0741edb1cc181c92b55273 | schema:name | Springer Nature - SN SciGraph project |
118 | ″ | rdf:type | schema:Organization |
119 | Nf382e30db5764f3c8cef43088d5c0fe7 | rdf:first | sg:person.01210476001.51 |
120 | ″ | rdf:rest | rdf:nil |
121 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
122 | ″ | schema:name | Physical Sciences |
123 | ″ | rdf:type | schema:DefinedTerm |
124 | anzsrc-for:0299 | schema:inDefinedTermSet | anzsrc-for: |
125 | ″ | schema:name | Other Physical Sciences |
126 | ″ | rdf:type | schema:DefinedTerm |
127 | anzsrc-for:03 | schema:inDefinedTermSet | anzsrc-for: |
128 | ″ | schema:name | Chemical Sciences |
129 | ″ | rdf:type | schema:DefinedTerm |
130 | anzsrc-for:0305 | schema:inDefinedTermSet | anzsrc-for: |
131 | ″ | schema:name | Organic Chemistry |
132 | ″ | rdf:type | schema:DefinedTerm |
133 | anzsrc-for:06 | schema:inDefinedTermSet | anzsrc-for: |
134 | ″ | schema:name | Biological Sciences |
135 | ″ | rdf:type | schema:DefinedTerm |
136 | anzsrc-for:0601 | schema:inDefinedTermSet | anzsrc-for: |
137 | ″ | schema:name | Biochemistry and Cell Biology |
138 | ″ | rdf:type | schema:DefinedTerm |
139 | sg:person.01210476001.51 | schema:affiliation | grid-institutes:grid.8547.e |
140 | ″ | schema:familyName | Hou |
141 | ″ | schema:givenName | Jun-Li |
142 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210476001.51 |
143 | ″ | rdf:type | schema:Person |
144 | sg:person.0623256321.27 | schema:affiliation | grid-institutes:grid.8547.e |
145 | ″ | schema:familyName | Behera |
146 | ″ | schema:givenName | Harekrushna |
147 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623256321.27 |
148 | ″ | rdf:type | schema:Person |
149 | grid-institutes:grid.8547.e | schema:alternateName | Department of Chemistry, Fudan University, Shanghai, China |
150 | ″ | schema:name | Department of Chemistry, Fudan University, Shanghai, China |
151 | ″ | rdf:type | schema:Organization |