Mitigating Climate Change Through Bioclimatic Applications and Cultivation Techniques in Agriculture (Andalusia, Spain) View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2019-05-29

AUTHORS

E. Cano , A. Cano-Ortiz , C. M. Musarella , J. C. Piñar Fuentes , J. M. H. Ighbareyeh , F. Leyva Gea , S. del Río

ABSTRACT

Bioclimatology is applied to agricultural and forestry ordinations, as farmlands and woodlands have a bioclimatic optimum for their development. It is essential to consider the thermo-climate and ombro-climate of the bioclimatic belts in the ordination of the territory to guarantee the maximum yield with minimum environmental costs. These bioclimatic parameters (thermo-climatic and ombro-climatic index, It/Itc and Io) are of particular interest in agriculture as a way of mitigating climate change. The main objective is to establish the climate trends and propose a phyto-bioclimatic model to mitigate sudden climate change in agriculture. The spatial pattern of temperature trends in southern Spain (Andalusia) between 1975 and 2007 was determined by analysing time series data from 48 climate stations distributed homogeneously throughout the study area on a monthly, seasonal and annual basis. The regression slopes were calculated with Sen’s test, and the statistical significance of the trends was determined using the Mann-Kendall non-parametric test after pre-whitening the series with autocorrelation. The trends detected on the maps were spatially visualised by applying geo-statistical data interpolation techniques. The study found that positive trends have prevailed over negative trends in the last three decades, with increases of up to 4 °C in spring and summer clearly reflecting the highest percentages of stations with a significant positive trend (92% and 85%, respectively). The trends towards the greatest temperature increase were observed in May and June, with somewhat more moderate increases in April and July. Increases in the range of 0.15–0.4 °C/decade were found at the annual level with 87% of stations significant. The temperature increase reduces flowering and produces losses in agricultural yield as a consequence. It is demonstrated that the vegetation cover acts as a soil water reservoir and retains moisture during the summer months. More... »

PAGES

31-69

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-981-13-6830-1_2

DOI

http://dx.doi.org/10.1007/978-981-13-6830-1_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1115959200


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Departamento Biolog\u00eda Animal, Vegetal y Ecolog\u00eda. Bot\u00e1nica, Universidad de Ja\u00e9n, Ja\u00e9n, Spain", 
          "id": "http://www.grid.ac/institutes/grid.21507.31", 
          "name": [
            "Departamento Biolog\u00eda Animal, Vegetal y Ecolog\u00eda. Bot\u00e1nica, Universidad de Ja\u00e9n, Ja\u00e9n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cano", 
        "givenName": "E.", 
        "id": "sg:person.014054552137.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014054552137.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departamento Biolog\u00eda Animal, Vegetal y Ecolog\u00eda. Bot\u00e1nica, Universidad de Ja\u00e9n, Ja\u00e9n, Spain", 
          "id": "http://www.grid.ac/institutes/grid.21507.31", 
          "name": [
            "Departamento Biolog\u00eda Animal, Vegetal y Ecolog\u00eda. Bot\u00e1nica, Universidad de Ja\u00e9n, Ja\u00e9n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cano-Ortiz", 
        "givenName": "A.", 
        "id": "sg:person.015447513137.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015447513137.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di AGRARIA, Universit\u00e0 \u201cMediterranea\u201d di Reggio Calabria, Reggio Calabria, Italy", 
          "id": "http://www.grid.ac/institutes/grid.11567.34", 
          "name": [
            "Departamento Biolog\u00eda Animal, Vegetal y Ecolog\u00eda. Bot\u00e1nica, Universidad de Ja\u00e9n, Ja\u00e9n, Spain", 
            "Dipartimento di AGRARIA, Universit\u00e0 \u201cMediterranea\u201d di Reggio Calabria, Reggio Calabria, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Musarella", 
        "givenName": "C. M.", 
        "id": "sg:person.013454303661.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013454303661.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departamento Biolog\u00eda Animal, Vegetal y Ecolog\u00eda. Bot\u00e1nica, Universidad de Ja\u00e9n, Ja\u00e9n, Spain", 
          "id": "http://www.grid.ac/institutes/grid.21507.31", 
          "name": [
            "Departamento Biolog\u00eda Animal, Vegetal y Ecolog\u00eda. Bot\u00e1nica, Universidad de Ja\u00e9n, Ja\u00e9n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pi\u00f1ar Fuentes", 
        "givenName": "J. C.", 
        "id": "sg:person.014243553713.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014243553713.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departamento Biolog\u00eda Animal, Vegetal y Ecolog\u00eda. Bot\u00e1nica, Universidad de Ja\u00e9n, Ja\u00e9n, Spain", 
          "id": "http://www.grid.ac/institutes/grid.21507.31", 
          "name": [
            "Departamento Biolog\u00eda Animal, Vegetal y Ecolog\u00eda. Bot\u00e1nica, Universidad de Ja\u00e9n, Ja\u00e9n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ighbareyeh", 
        "givenName": "J. M. H.", 
        "id": "sg:person.012677447375.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012677447375.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departamento Biolog\u00eda Animal, Vegetal y Ecolog\u00eda. Bot\u00e1nica, Universidad de Ja\u00e9n, Ja\u00e9n, Spain", 
          "id": "http://www.grid.ac/institutes/grid.21507.31", 
          "name": [
            "Departamento Biolog\u00eda Animal, Vegetal y Ecolog\u00eda. Bot\u00e1nica, Universidad de Ja\u00e9n, Ja\u00e9n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leyva Gea", 
        "givenName": "F.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biodiversity and Environmental Management (Botany), Faculty of Biological and Environmental Sciences, University of Le\u00f3n, Le\u00f3n, Spain", 
          "id": "http://www.grid.ac/institutes/grid.4807.b", 
          "name": [
            "Department of Biodiversity and Environmental Management (Botany), Faculty of Biological and Environmental Sciences, University of Le\u00f3n, Le\u00f3n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "del R\u00edo", 
        "givenName": "S.", 
        "id": "sg:person.013763204767.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013763204767.99"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2019-05-29", 
    "datePublishedReg": "2019-05-29", 
    "description": "Bioclimatology is applied to agricultural and forestry ordinations, as farmlands and woodlands have a bioclimatic optimum for their development. It is essential to consider the thermo-climate and ombro-climate of the bioclimatic belts in the ordination of the territory to guarantee the maximum yield with minimum environmental costs. These bioclimatic parameters (thermo-climatic and ombro-climatic index, It/Itc and Io) are of particular interest in agriculture as a way of mitigating climate change. The main objective is to establish the climate trends and propose a phyto-bioclimatic model to mitigate sudden climate change in agriculture. The spatial pattern of temperature trends in southern Spain (Andalusia) between 1975 and 2007 was determined by analysing time series data from 48 climate stations distributed homogeneously throughout the study area on a monthly, seasonal and annual basis. The regression slopes were calculated with Sen\u2019s test, and the statistical significance of the trends was determined using the Mann-Kendall non-parametric test after pre-whitening the series with autocorrelation. The trends detected on the maps were spatially visualised by applying geo-statistical data interpolation techniques. The study found that positive trends have prevailed over negative trends in the last three decades, with increases of up to 4\u00a0\u00b0C in spring and summer clearly reflecting the highest percentages of stations with a significant positive trend (92% and 85%, respectively). The trends towards the greatest temperature increase were observed in May and June, with somewhat more moderate increases in April and July. Increases in the range of 0.15\u20130.4\u00a0\u00b0C/decade were found at the annual level with 87% of stations significant. The temperature increase reduces flowering and produces losses in agricultural yield as a consequence. It is demonstrated that the vegetation cover acts as a soil water reservoir and retains moisture during the summer months.", 
    "editor": [
      {
        "familyName": "Jhariya", 
        "givenName": "Manoj Kumar", 
        "type": "Person"
      }, 
      {
        "familyName": "Banerjee", 
        "givenName": "Arnab", 
        "type": "Person"
      }, 
      {
        "familyName": "Meena", 
        "givenName": "Ram Swaroop", 
        "type": "Person"
      }, 
      {
        "familyName": "Yadav", 
        "givenName": "Dhiraj Kumar", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-981-13-6830-1_2", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-981-13-6829-5", 
        "978-981-13-6830-1"
      ], 
      "name": "Sustainable Agriculture, Forest and Environmental Management", 
      "type": "Book"
    }, 
    "keywords": [
      "data interpolation techniques", 
      "interpolation technique", 
      "time series data", 
      "minimum environmental cost", 
      "sudden climate change", 
      "series data", 
      "particular interest", 
      "autocorrelation", 
      "optimum", 
      "parameters", 
      "stations", 
      "technique", 
      "temperature increase", 
      "main objective", 
      "model", 
      "Sen\u2019s tests", 
      "applications", 
      "spatial patterns", 
      "soil water reservoir", 
      "maps", 
      "climate stations", 
      "non-parametric tests", 
      "regression slope", 
      "statistical significance", 
      "temperature trends", 
      "reservoir", 
      "cost", 
      "interest", 
      "range", 
      "way", 
      "basis", 
      "data", 
      "series", 
      "slope", 
      "bioclimatology", 
      "objective", 
      "water reservoirs", 
      "annual level", 
      "decades", 
      "trends", 
      "test", 
      "consequences", 
      "increase", 
      "environmental costs", 
      "bioclimatic parameters", 
      "changes", 
      "area", 
      "patterns", 
      "spring", 
      "ordination", 
      "study area", 
      "climate trends", 
      "loss", 
      "bioclimatic belts", 
      "Mann-Kendall non-parametric test", 
      "negative trend", 
      "southern Spain", 
      "significance", 
      "development", 
      "positive trend", 
      "belt", 
      "study", 
      "moderate increase", 
      "annual basis", 
      "levels", 
      "maximum yield", 
      "yield", 
      "climate change", 
      "greater temperature increase", 
      "agricultural yields", 
      "cultivation techniques", 
      "territory", 
      "Spain", 
      "agriculture", 
      "significant positive trend", 
      "acts", 
      "summer months", 
      "percentage", 
      "moisture", 
      "farmland", 
      "woodland", 
      "summer", 
      "high percentage", 
      "months"
    ], 
    "name": "Mitigating Climate Change Through Bioclimatic Applications and Cultivation Techniques in Agriculture (Andalusia, Spain)", 
    "pagination": "31-69", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1115959200"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-981-13-6830-1_2"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-981-13-6830-1_2", 
      "https://app.dimensions.ai/details/publication/pub.1115959200"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_330.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-981-13-6830-1_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-981-13-6830-1_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-981-13-6830-1_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-981-13-6830-1_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-981-13-6830-1_2'


 

This table displays all metadata directly associated to this object as RDF triples.

206 TRIPLES      22 PREDICATES      108 URIs      101 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-981-13-6830-1_2 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N63c63aff42e84f01b9cae96cb63cc9f2
4 schema:datePublished 2019-05-29
5 schema:datePublishedReg 2019-05-29
6 schema:description Bioclimatology is applied to agricultural and forestry ordinations, as farmlands and woodlands have a bioclimatic optimum for their development. It is essential to consider the thermo-climate and ombro-climate of the bioclimatic belts in the ordination of the territory to guarantee the maximum yield with minimum environmental costs. These bioclimatic parameters (thermo-climatic and ombro-climatic index, It/Itc and Io) are of particular interest in agriculture as a way of mitigating climate change. The main objective is to establish the climate trends and propose a phyto-bioclimatic model to mitigate sudden climate change in agriculture. The spatial pattern of temperature trends in southern Spain (Andalusia) between 1975 and 2007 was determined by analysing time series data from 48 climate stations distributed homogeneously throughout the study area on a monthly, seasonal and annual basis. The regression slopes were calculated with Sen’s test, and the statistical significance of the trends was determined using the Mann-Kendall non-parametric test after pre-whitening the series with autocorrelation. The trends detected on the maps were spatially visualised by applying geo-statistical data interpolation techniques. The study found that positive trends have prevailed over negative trends in the last three decades, with increases of up to 4 °C in spring and summer clearly reflecting the highest percentages of stations with a significant positive trend (92% and 85%, respectively). The trends towards the greatest temperature increase were observed in May and June, with somewhat more moderate increases in April and July. Increases in the range of 0.15–0.4 °C/decade were found at the annual level with 87% of stations significant. The temperature increase reduces flowering and produces losses in agricultural yield as a consequence. It is demonstrated that the vegetation cover acts as a soil water reservoir and retains moisture during the summer months.
7 schema:editor N22e82c9d74594f86a7366168328fda7f
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N1752930fcab544f7aa9ec6b402f0923e
11 schema:keywords Mann-Kendall non-parametric test
12 Sen’s tests
13 Spain
14 acts
15 agricultural yields
16 agriculture
17 annual basis
18 annual level
19 applications
20 area
21 autocorrelation
22 basis
23 belt
24 bioclimatic belts
25 bioclimatic parameters
26 bioclimatology
27 changes
28 climate change
29 climate stations
30 climate trends
31 consequences
32 cost
33 cultivation techniques
34 data
35 data interpolation techniques
36 decades
37 development
38 environmental costs
39 farmland
40 greater temperature increase
41 high percentage
42 increase
43 interest
44 interpolation technique
45 levels
46 loss
47 main objective
48 maps
49 maximum yield
50 minimum environmental cost
51 model
52 moderate increase
53 moisture
54 months
55 negative trend
56 non-parametric tests
57 objective
58 optimum
59 ordination
60 parameters
61 particular interest
62 patterns
63 percentage
64 positive trend
65 range
66 regression slope
67 reservoir
68 series
69 series data
70 significance
71 significant positive trend
72 slope
73 soil water reservoir
74 southern Spain
75 spatial patterns
76 spring
77 stations
78 statistical significance
79 study
80 study area
81 sudden climate change
82 summer
83 summer months
84 technique
85 temperature increase
86 temperature trends
87 territory
88 test
89 time series data
90 trends
91 water reservoirs
92 way
93 woodland
94 yield
95 schema:name Mitigating Climate Change Through Bioclimatic Applications and Cultivation Techniques in Agriculture (Andalusia, Spain)
96 schema:pagination 31-69
97 schema:productId N1026feea01fb40068b61027e8afe28aa
98 Nfdb130fd28f14484acd59924f1b64407
99 schema:publisher Ncfc82c27e9ff4449b9709be27e5617c4
100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1115959200
101 https://doi.org/10.1007/978-981-13-6830-1_2
102 schema:sdDatePublished 2022-12-01T06:51
103 schema:sdLicense https://scigraph.springernature.com/explorer/license/
104 schema:sdPublisher Ndfe087cbe70f43bebf27d54080f267ae
105 schema:url https://doi.org/10.1007/978-981-13-6830-1_2
106 sgo:license sg:explorer/license/
107 sgo:sdDataset chapters
108 rdf:type schema:Chapter
109 N1026feea01fb40068b61027e8afe28aa schema:name dimensions_id
110 schema:value pub.1115959200
111 rdf:type schema:PropertyValue
112 N16de77a1f5814acfb02d2c04f7b87493 rdf:first sg:person.012677447375.15
113 rdf:rest N7d59d1b2179d4b139b5dfc7caaa3afae
114 N1752930fcab544f7aa9ec6b402f0923e schema:isbn 978-981-13-6829-5
115 978-981-13-6830-1
116 schema:name Sustainable Agriculture, Forest and Environmental Management
117 rdf:type schema:Book
118 N22e82c9d74594f86a7366168328fda7f rdf:first N637d453d57be45e98428c87e8d2d2530
119 rdf:rest Ncd4ce898f919487392ccdc04b7c248d0
120 N243f2709065248ef819e666c5e1dbce0 rdf:first sg:person.015447513137.12
121 rdf:rest Nf1b1518056ee4511a62c1f388f9b5942
122 N52d6386229c64775862b70c5da0ee7d0 schema:affiliation grid-institutes:grid.21507.31
123 schema:familyName Leyva Gea
124 schema:givenName F.
125 rdf:type schema:Person
126 N637d453d57be45e98428c87e8d2d2530 schema:familyName Jhariya
127 schema:givenName Manoj Kumar
128 rdf:type schema:Person
129 N63c63aff42e84f01b9cae96cb63cc9f2 rdf:first sg:person.014054552137.02
130 rdf:rest N243f2709065248ef819e666c5e1dbce0
131 N6b9b8d110aa6442787725e5a86ba8bcf rdf:first Nf325734cea784af2be7b725532eeae97
132 rdf:rest N6bceca0aa60641ec8e95c64ab20109be
133 N6bceca0aa60641ec8e95c64ab20109be rdf:first N8111dfef6cec424e963d6d1ca7a318c7
134 rdf:rest rdf:nil
135 N7d59d1b2179d4b139b5dfc7caaa3afae rdf:first N52d6386229c64775862b70c5da0ee7d0
136 rdf:rest Nbe9d55d73e19456eb86f76e1fb5058b6
137 N8111dfef6cec424e963d6d1ca7a318c7 schema:familyName Yadav
138 schema:givenName Dhiraj Kumar
139 rdf:type schema:Person
140 Na4d68d5f8c0743a29fad4020e975ae47 rdf:first sg:person.014243553713.44
141 rdf:rest N16de77a1f5814acfb02d2c04f7b87493
142 Nbe9d55d73e19456eb86f76e1fb5058b6 rdf:first sg:person.013763204767.99
143 rdf:rest rdf:nil
144 Ncd4ce898f919487392ccdc04b7c248d0 rdf:first Ncf1f912ac7614e40a7f5ef7a92e74167
145 rdf:rest N6b9b8d110aa6442787725e5a86ba8bcf
146 Ncf1f912ac7614e40a7f5ef7a92e74167 schema:familyName Banerjee
147 schema:givenName Arnab
148 rdf:type schema:Person
149 Ncfc82c27e9ff4449b9709be27e5617c4 schema:name Springer Nature
150 rdf:type schema:Organisation
151 Ndfe087cbe70f43bebf27d54080f267ae schema:name Springer Nature - SN SciGraph project
152 rdf:type schema:Organization
153 Nf1b1518056ee4511a62c1f388f9b5942 rdf:first sg:person.013454303661.98
154 rdf:rest Na4d68d5f8c0743a29fad4020e975ae47
155 Nf325734cea784af2be7b725532eeae97 schema:familyName Meena
156 schema:givenName Ram Swaroop
157 rdf:type schema:Person
158 Nfdb130fd28f14484acd59924f1b64407 schema:name doi
159 schema:value 10.1007/978-981-13-6830-1_2
160 rdf:type schema:PropertyValue
161 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
162 schema:name Mathematical Sciences
163 rdf:type schema:DefinedTerm
164 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
165 schema:name Statistics
166 rdf:type schema:DefinedTerm
167 sg:person.012677447375.15 schema:affiliation grid-institutes:grid.21507.31
168 schema:familyName Ighbareyeh
169 schema:givenName J. M. H.
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012677447375.15
171 rdf:type schema:Person
172 sg:person.013454303661.98 schema:affiliation grid-institutes:grid.11567.34
173 schema:familyName Musarella
174 schema:givenName C. M.
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013454303661.98
176 rdf:type schema:Person
177 sg:person.013763204767.99 schema:affiliation grid-institutes:grid.4807.b
178 schema:familyName del Río
179 schema:givenName S.
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013763204767.99
181 rdf:type schema:Person
182 sg:person.014054552137.02 schema:affiliation grid-institutes:grid.21507.31
183 schema:familyName Cano
184 schema:givenName E.
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014054552137.02
186 rdf:type schema:Person
187 sg:person.014243553713.44 schema:affiliation grid-institutes:grid.21507.31
188 schema:familyName Piñar Fuentes
189 schema:givenName J. C.
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014243553713.44
191 rdf:type schema:Person
192 sg:person.015447513137.12 schema:affiliation grid-institutes:grid.21507.31
193 schema:familyName Cano-Ortiz
194 schema:givenName A.
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015447513137.12
196 rdf:type schema:Person
197 grid-institutes:grid.11567.34 schema:alternateName Dipartimento di AGRARIA, Università “Mediterranea” di Reggio Calabria, Reggio Calabria, Italy
198 schema:name Departamento Biología Animal, Vegetal y Ecología. Botánica, Universidad de Jaén, Jaén, Spain
199 Dipartimento di AGRARIA, Università “Mediterranea” di Reggio Calabria, Reggio Calabria, Italy
200 rdf:type schema:Organization
201 grid-institutes:grid.21507.31 schema:alternateName Departamento Biología Animal, Vegetal y Ecología. Botánica, Universidad de Jaén, Jaén, Spain
202 schema:name Departamento Biología Animal, Vegetal y Ecología. Botánica, Universidad de Jaén, Jaén, Spain
203 rdf:type schema:Organization
204 grid-institutes:grid.4807.b schema:alternateName Department of Biodiversity and Environmental Management (Botany), Faculty of Biological and Environmental Sciences, University of León, León, Spain
205 schema:name Department of Biodiversity and Environmental Management (Botany), Faculty of Biological and Environmental Sciences, University of León, León, Spain
206 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...