Advanced Techniques for Characterizing DBP Precursors from Eutrophic Water and Their Applications for DBP Prediction View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-11-08

AUTHORS

Lap-Cuong Hua , Chihpin Huang

ABSTRACT

Algogenic organic matter (AOM) in eutrophic water has become a critical problem for the sustainable operation of water treatment plants. As AOM is a high-yielding precursor of disinfection by-products (DBPs), its occurrence in water sources intensively raises public attention on the issues of safe and stable supply of drinking water. This chapter presents current advanced knowledge of AOM characterization and their applications for the prediction of DBP formation upon chlorination. Herein, two dominant classes of carbonaceous DBP (C-DBPs), trihalomethanes (THMs) and haloacetic acids (HAAs), were reviewed as major products of DBP from the eutrophic water. Overall, AOM is higher yielding THM and HAA precursors upon chlorination compared to terrestrial natural organic matter (NOM). Of the characterization tools, fluorescent spectrometry, i.e., excitation–emission matrix (EEM), is an advanced proxy to trace AOM-derived C-DBP formation over traditional bulk parameters or ultraviolet absorbance because of its greater sensitivity and selectivity. However, future work may use EEM technique in combination with bulk parameters, such as chlorine consumption, or MW properties to increase its predictability to AOM-DBP formation. More... »

PAGES

37-62

Book

TITLE

Water and Wastewater Treatment Technologies

ISBN

978-981-13-3258-6
978-981-13-3259-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-981-13-3259-3_3

DOI

http://dx.doi.org/10.1007/978-981-13-3259-3_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1109772786


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0399", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Environmental Engineering, National Chiao Tung University, Hsinchu, Taiwan, ROC", 
          "id": "http://www.grid.ac/institutes/grid.260539.b", 
          "name": [
            "Institute of Environmental Engineering, National Chiao Tung University, Hsinchu, Taiwan, ROC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hua", 
        "givenName": "Lap-Cuong", 
        "id": "sg:person.01167521405.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167521405.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Environmental Engineering, National Chiao Tung University, Hsinchu, Taiwan, ROC", 
          "id": "http://www.grid.ac/institutes/grid.260539.b", 
          "name": [
            "Institute of Environmental Engineering, National Chiao Tung University, Hsinchu, Taiwan, ROC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Chihpin", 
        "id": "sg:person.012752703465.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012752703465.45"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2018-11-08", 
    "datePublishedReg": "2018-11-08", 
    "description": "Algogenic organic matter (AOM) in eutrophic water has become a critical problem for the sustainable operation of water treatment plants. As AOM is a high-yielding precursor of disinfection by-products (DBPs), its occurrence in water sources intensively raises public attention on the issues of safe and stable supply of drinking water. This chapter presents current advanced knowledge of AOM characterization and their applications for the prediction of DBP formation upon chlorination. Herein, two dominant classes of carbonaceous DBP (C-DBPs), trihalomethanes (THMs) and haloacetic acids (HAAs), were reviewed as major products of DBP from the eutrophic water. Overall, AOM is higher yielding THM and HAA precursors upon chlorination compared to terrestrial natural organic matter (NOM). Of the characterization tools, fluorescent spectrometry, i.e., excitation\u2013emission matrix (EEM), is an advanced proxy to trace AOM-derived C-DBP formation over traditional bulk parameters or ultraviolet absorbance because of its greater sensitivity and selectivity. However, future work may use EEM technique in combination with bulk parameters, such as chlorine consumption, or MW properties to increase its predictability to AOM-DBP formation.", 
    "editor": [
      {
        "familyName": "Bui", 
        "givenName": "Xuan-Thanh", 
        "type": "Person"
      }, 
      {
        "familyName": "Chiemchaisri", 
        "givenName": "Chart", 
        "type": "Person"
      }, 
      {
        "familyName": "Fujioka", 
        "givenName": "Takahiro", 
        "type": "Person"
      }, 
      {
        "familyName": "Varjani", 
        "givenName": "Sunita", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-981-13-3259-3_3", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-981-13-3258-6", 
        "978-981-13-3259-3"
      ], 
      "name": "Water and Wastewater Treatment Technologies", 
      "type": "Book"
    }, 
    "keywords": [
      "natural organic matter", 
      "excitation-emission matrix", 
      "DBP formation", 
      "haloacetic acids", 
      "terrestrial natural organic matter", 
      "precursors of disinfection", 
      "MW properties", 
      "carbonaceous DBPs", 
      "organic matter", 
      "DBP precursors", 
      "fluorescent spectrometry", 
      "HAA precursors", 
      "ultraviolet absorbance", 
      "major product", 
      "characterization tools", 
      "water treatment plants", 
      "trihalomethanes", 
      "chlorine consumption", 
      "eutrophic waters", 
      "precursors", 
      "chlorination", 
      "water", 
      "EEM technique", 
      "bulk parameters", 
      "treatment plants", 
      "formation", 
      "DBP prediction", 
      "selectivity", 
      "spectrometry", 
      "sustainable operation", 
      "products", 
      "drinking water", 
      "absorbance", 
      "water sources", 
      "Herein", 
      "disinfection", 
      "characterization", 
      "stable supply", 
      "properties", 
      "applications", 
      "acid", 
      "advanced techniques", 
      "critical problem", 
      "greater sensitivity", 
      "DBP", 
      "technique", 
      "matrix", 
      "parameters", 
      "prediction", 
      "matter", 
      "operation", 
      "future work", 
      "sensitivity", 
      "work", 
      "dominant class", 
      "source", 
      "consumption", 
      "supply", 
      "combination", 
      "chapter", 
      "class", 
      "advanced knowledge", 
      "plants", 
      "problem", 
      "attention", 
      "tool", 
      "AOM", 
      "issues", 
      "occurrence", 
      "predictability", 
      "public attention", 
      "knowledge", 
      "proxy", 
      "current advanced knowledge", 
      "AOM characterization", 
      "advanced proxy", 
      "traditional bulk parameters", 
      "AOM-DBP formation"
    ], 
    "name": "Advanced Techniques for Characterizing DBP Precursors from Eutrophic Water and Their Applications for DBP Prediction", 
    "pagination": "37-62", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1109772786"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-981-13-3259-3_3"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-981-13-3259-3_3", 
      "https://app.dimensions.ai/details/publication/pub.1109772786"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_323.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-981-13-3259-3_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-981-13-3259-3_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-981-13-3259-3_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-981-13-3259-3_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-981-13-3259-3_3'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      23 PREDICATES      102 URIs      95 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-981-13-3259-3_3 schema:about anzsrc-for:03
2 anzsrc-for:0399
3 schema:author N1985c0db4931473285b0da7320839d32
4 schema:datePublished 2018-11-08
5 schema:datePublishedReg 2018-11-08
6 schema:description Algogenic organic matter (AOM) in eutrophic water has become a critical problem for the sustainable operation of water treatment plants. As AOM is a high-yielding precursor of disinfection by-products (DBPs), its occurrence in water sources intensively raises public attention on the issues of safe and stable supply of drinking water. This chapter presents current advanced knowledge of AOM characterization and their applications for the prediction of DBP formation upon chlorination. Herein, two dominant classes of carbonaceous DBP (C-DBPs), trihalomethanes (THMs) and haloacetic acids (HAAs), were reviewed as major products of DBP from the eutrophic water. Overall, AOM is higher yielding THM and HAA precursors upon chlorination compared to terrestrial natural organic matter (NOM). Of the characterization tools, fluorescent spectrometry, i.e., excitation–emission matrix (EEM), is an advanced proxy to trace AOM-derived C-DBP formation over traditional bulk parameters or ultraviolet absorbance because of its greater sensitivity and selectivity. However, future work may use EEM technique in combination with bulk parameters, such as chlorine consumption, or MW properties to increase its predictability to AOM-DBP formation.
7 schema:editor Nada08ac6c0074c41a2061b556c95fe53
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Na0d828313f6e46859a4b7097e0b7cdea
12 schema:keywords AOM
13 AOM characterization
14 AOM-DBP formation
15 DBP
16 DBP formation
17 DBP precursors
18 DBP prediction
19 EEM technique
20 HAA precursors
21 Herein
22 MW properties
23 absorbance
24 acid
25 advanced knowledge
26 advanced proxy
27 advanced techniques
28 applications
29 attention
30 bulk parameters
31 carbonaceous DBPs
32 chapter
33 characterization
34 characterization tools
35 chlorination
36 chlorine consumption
37 class
38 combination
39 consumption
40 critical problem
41 current advanced knowledge
42 disinfection
43 dominant class
44 drinking water
45 eutrophic waters
46 excitation-emission matrix
47 fluorescent spectrometry
48 formation
49 future work
50 greater sensitivity
51 haloacetic acids
52 issues
53 knowledge
54 major product
55 matrix
56 matter
57 natural organic matter
58 occurrence
59 operation
60 organic matter
61 parameters
62 plants
63 precursors
64 precursors of disinfection
65 predictability
66 prediction
67 problem
68 products
69 properties
70 proxy
71 public attention
72 selectivity
73 sensitivity
74 source
75 spectrometry
76 stable supply
77 supply
78 sustainable operation
79 technique
80 terrestrial natural organic matter
81 tool
82 traditional bulk parameters
83 treatment plants
84 trihalomethanes
85 ultraviolet absorbance
86 water
87 water sources
88 water treatment plants
89 work
90 schema:name Advanced Techniques for Characterizing DBP Precursors from Eutrophic Water and Their Applications for DBP Prediction
91 schema:pagination 37-62
92 schema:productId N1783b5db723540d482f635fa7e63d2a7
93 N474904551f1e4ed88e17aa682b8f5f65
94 schema:publisher N54dd28d0cacf460d99db8eaf6f69066a
95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109772786
96 https://doi.org/10.1007/978-981-13-3259-3_3
97 schema:sdDatePublished 2022-01-01T19:19
98 schema:sdLicense https://scigraph.springernature.com/explorer/license/
99 schema:sdPublisher N8501f1e92c134b1e90ec1c29d92eb3f5
100 schema:url https://doi.org/10.1007/978-981-13-3259-3_3
101 sgo:license sg:explorer/license/
102 sgo:sdDataset chapters
103 rdf:type schema:Chapter
104 N0314abb8b6944f058b4d3ce6dc3ca1b6 schema:familyName Bui
105 schema:givenName Xuan-Thanh
106 rdf:type schema:Person
107 N1783b5db723540d482f635fa7e63d2a7 schema:name doi
108 schema:value 10.1007/978-981-13-3259-3_3
109 rdf:type schema:PropertyValue
110 N182fdcd7cc4a46c39ae05e4919c719c9 rdf:first sg:person.012752703465.45
111 rdf:rest rdf:nil
112 N1985c0db4931473285b0da7320839d32 rdf:first sg:person.01167521405.28
113 rdf:rest N182fdcd7cc4a46c39ae05e4919c719c9
114 N1be2374a06584e3ba002ac58533fdac4 rdf:first Nb0492f1ec2df4904bc9fadca6c709f8f
115 rdf:rest Nc4900e89c10240eba12452a2272ca7be
116 N474904551f1e4ed88e17aa682b8f5f65 schema:name dimensions_id
117 schema:value pub.1109772786
118 rdf:type schema:PropertyValue
119 N54dd28d0cacf460d99db8eaf6f69066a schema:name Springer Nature
120 rdf:type schema:Organisation
121 N5ae7b199e430404da5824138e906c82d schema:familyName Chiemchaisri
122 schema:givenName Chart
123 rdf:type schema:Person
124 N7df713edd87c4d53a4b159af0f16b388 rdf:first N5ae7b199e430404da5824138e906c82d
125 rdf:rest N1be2374a06584e3ba002ac58533fdac4
126 N8501f1e92c134b1e90ec1c29d92eb3f5 schema:name Springer Nature - SN SciGraph project
127 rdf:type schema:Organization
128 Na0d828313f6e46859a4b7097e0b7cdea schema:isbn 978-981-13-3258-6
129 978-981-13-3259-3
130 schema:name Water and Wastewater Treatment Technologies
131 rdf:type schema:Book
132 Nada08ac6c0074c41a2061b556c95fe53 rdf:first N0314abb8b6944f058b4d3ce6dc3ca1b6
133 rdf:rest N7df713edd87c4d53a4b159af0f16b388
134 Nb0492f1ec2df4904bc9fadca6c709f8f schema:familyName Fujioka
135 schema:givenName Takahiro
136 rdf:type schema:Person
137 Nc4900e89c10240eba12452a2272ca7be rdf:first Nda37daf8e5394ba39adc9d3fc96c8092
138 rdf:rest rdf:nil
139 Nda37daf8e5394ba39adc9d3fc96c8092 schema:familyName Varjani
140 schema:givenName Sunita
141 rdf:type schema:Person
142 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
143 schema:name Chemical Sciences
144 rdf:type schema:DefinedTerm
145 anzsrc-for:0399 schema:inDefinedTermSet anzsrc-for:
146 schema:name Other Chemical Sciences
147 rdf:type schema:DefinedTerm
148 sg:person.01167521405.28 schema:affiliation grid-institutes:grid.260539.b
149 schema:familyName Hua
150 schema:givenName Lap-Cuong
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167521405.28
152 rdf:type schema:Person
153 sg:person.012752703465.45 schema:affiliation grid-institutes:grid.260539.b
154 schema:familyName Huang
155 schema:givenName Chihpin
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012752703465.45
157 rdf:type schema:Person
158 grid-institutes:grid.260539.b schema:alternateName Institute of Environmental Engineering, National Chiao Tung University, Hsinchu, Taiwan, ROC
159 schema:name Institute of Environmental Engineering, National Chiao Tung University, Hsinchu, Taiwan, ROC
160 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...