Natural Variation in Freezing Tolerance and Cold Acclimation Response in Arabidopsis thaliana and Related Species View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-10-05

AUTHORS

Ellen Zuther , Yang Ping Lee , Alexander Erban , Joachim Kopka , Dirk K. Hincha

ABSTRACT

During low-temperature exposure, temperate plant species increase their freezing tolerance in a process termed cold acclimation. The molecular mechanisms involved in cold acclimation have been mostly investigated in Arabidopsis thaliana. In addition, other Brassicaceae species related to A. thaliana have been employed in recent years to study plant stress responses on a phylogenetically broader basis and in some cases with extremophile species with a much higher stress tolerance. In this paper, we briefly summarize cold acclimation responses in A. thaliana and current knowledge about cold acclimation in A. thaliana relatives with special emphasis on Eutrema salsugineum and two closely related Thellungiella species. We then present a transcriptomic and metabolomic analysis of cold acclimation in five A. thaliana and two E. salsugineum accessions that differ widely in their freezing tolerance. Differences in the cold responses of the two species are discussed. More... »

PAGES

81-98

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-981-13-1244-1_5

DOI

http://dx.doi.org/10.1007/978-981-13-1244-1_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107414774

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30288705


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Acclimatization", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Arabidopsis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brassicaceae", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cold Shock Proteins and Peptides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cold-Shock Response", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Energy Metabolism", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Freezing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation, Plant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plant Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Transduction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Species Specificity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Potsdam, Germany", 
          "id": "http://www.grid.ac/institutes/grid.418390.7", 
          "name": [
            "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Potsdam, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zuther", 
        "givenName": "Ellen", 
        "id": "sg:person.0627062115.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627062115.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "FELDA Global Ventures Research and Development, Kuala Lumpur, Malaysia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Potsdam, Germany", 
            "FELDA Global Ventures Research and Development, Kuala Lumpur, Malaysia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Yang Ping", 
        "id": "sg:person.01316643071.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316643071.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Potsdam, Germany", 
          "id": "http://www.grid.ac/institutes/grid.418390.7", 
          "name": [
            "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Potsdam, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Erban", 
        "givenName": "Alexander", 
        "id": "sg:person.01353252733.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353252733.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Potsdam, Germany", 
          "id": "http://www.grid.ac/institutes/grid.418390.7", 
          "name": [
            "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Potsdam, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kopka", 
        "givenName": "Joachim", 
        "id": "sg:person.0633132075.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633132075.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Potsdam, Germany", 
          "id": "http://www.grid.ac/institutes/grid.418390.7", 
          "name": [
            "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Potsdam, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hincha", 
        "givenName": "Dirk K.", 
        "id": "sg:person.0636364224.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636364224.44"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2018-10-05", 
    "datePublishedReg": "2018-10-05", 
    "description": "During low-temperature exposure, temperate plant species increase their freezing tolerance in a process termed cold acclimation. The molecular mechanisms involved in cold acclimation have been mostly investigated in Arabidopsis thaliana. In addition, other Brassicaceae species related to A. thaliana have been employed in recent years to study plant stress responses on a phylogenetically broader basis and in some cases with extremophile species with a much higher stress tolerance. In this paper, we briefly summarize cold acclimation responses in A. thaliana and current knowledge about cold acclimation in A. thaliana relatives with special emphasis on Eutrema salsugineum and two closely related Thellungiella species. We then present a transcriptomic and metabolomic analysis of cold acclimation in five A. thaliana and two E. salsugineum accessions that differ widely in their freezing tolerance. Differences in the cold responses of the two species are discussed.", 
    "editor": [
      {
        "familyName": "Iwaya-Inoue", 
        "givenName": "Mari", 
        "type": "Person"
      }, 
      {
        "familyName": "Sakurai", 
        "givenName": "Minoru", 
        "type": "Person"
      }, 
      {
        "familyName": "Uemura", 
        "givenName": "Matsuo", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-981-13-1244-1_5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-981-13-1243-4", 
        "978-981-13-1244-1"
      ], 
      "name": "Survival Strategies in Extreme Cold and Desiccation", 
      "type": "Book"
    }, 
    "keywords": [
      "cold acclimation response", 
      "cold acclimation", 
      "Arabidopsis thaliana", 
      "acclimation responses", 
      "freezing tolerance", 
      "temperate plant species", 
      "plant stress responses", 
      "high stress tolerance", 
      "Eutrema salsugineum", 
      "Brassicaceae species", 
      "stress tolerance", 
      "plant species", 
      "extremophile species", 
      "related species", 
      "thaliana", 
      "cold response", 
      "low temperature exposure", 
      "molecular mechanisms", 
      "natural variation", 
      "stress response", 
      "acclimation", 
      "species", 
      "current knowledge", 
      "metabolomic analysis", 
      "tolerance", 
      "salsugineum", 
      "accessions", 
      "response", 
      "relatives", 
      "mechanism", 
      "broad basis", 
      "special emphasis", 
      "variation", 
      "recent years", 
      "basis", 
      "addition", 
      "exposure", 
      "analysis", 
      "process", 
      "knowledge", 
      "differences", 
      "emphasis", 
      "years", 
      "cases", 
      "paper"
    ], 
    "name": "Natural Variation in Freezing Tolerance and Cold Acclimation Response in Arabidopsis thaliana and Related Species", 
    "pagination": "81-98", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107414774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-981-13-1244-1_5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30288705"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-981-13-1244-1_5", 
      "https://app.dimensions.ai/details/publication/pub.1107414774"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-10T10:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_383.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-981-13-1244-1_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-981-13-1244-1_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-981-13-1244-1_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-981-13-1244-1_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-981-13-1244-1_5'


 

This table displays all metadata directly associated to this object as RDF triples.

199 TRIPLES      23 PREDICATES      83 URIs      77 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-981-13-1244-1_5 schema:about N1bcd42d1a2a746faa09bbaf0fd45c15a
2 N309c3f38b57246ae8327b2b0f72b4a80
3 N4c38629e53c147d0be8a6423e51994e2
4 N5e79947620b941a98624df3c982e41eb
5 N6f8e23a177d3432e979e3a5c8001003e
6 N8918801ae28f4e229cf54919ab77f2eb
7 N93c6d1eb77994f05b85500f712920633
8 N9579f3a390fc485c8bf98223bc912676
9 Nae73ff3a70114c488bf7fda729e71038
10 Nae8f84fa211a4f469a12d1e821af6651
11 Nb32013aa536b4935b2a9352bcbd24c7a
12 Nd6e470d0259445328108753c3681baab
13 Ned37a708e1674be5aa4ff0726d8c3c11
14 anzsrc-for:11
15 schema:author N8aa5f792e4d048d6a5a05e108dde54f9
16 schema:datePublished 2018-10-05
17 schema:datePublishedReg 2018-10-05
18 schema:description During low-temperature exposure, temperate plant species increase their freezing tolerance in a process termed cold acclimation. The molecular mechanisms involved in cold acclimation have been mostly investigated in Arabidopsis thaliana. In addition, other Brassicaceae species related to A. thaliana have been employed in recent years to study plant stress responses on a phylogenetically broader basis and in some cases with extremophile species with a much higher stress tolerance. In this paper, we briefly summarize cold acclimation responses in A. thaliana and current knowledge about cold acclimation in A. thaliana relatives with special emphasis on Eutrema salsugineum and two closely related Thellungiella species. We then present a transcriptomic and metabolomic analysis of cold acclimation in five A. thaliana and two E. salsugineum accessions that differ widely in their freezing tolerance. Differences in the cold responses of the two species are discussed.
19 schema:editor N003c748f71f24f6c93d2d104e2e0c662
20 schema:genre chapter
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N6d8ca8d0236748d4bcdb2faad0c59598
24 schema:keywords Arabidopsis thaliana
25 Brassicaceae species
26 Eutrema salsugineum
27 accessions
28 acclimation
29 acclimation responses
30 addition
31 analysis
32 basis
33 broad basis
34 cases
35 cold acclimation
36 cold acclimation response
37 cold response
38 current knowledge
39 differences
40 emphasis
41 exposure
42 extremophile species
43 freezing tolerance
44 high stress tolerance
45 knowledge
46 low temperature exposure
47 mechanism
48 metabolomic analysis
49 molecular mechanisms
50 natural variation
51 paper
52 plant species
53 plant stress responses
54 process
55 recent years
56 related species
57 relatives
58 response
59 salsugineum
60 special emphasis
61 species
62 stress response
63 stress tolerance
64 temperate plant species
65 thaliana
66 tolerance
67 variation
68 years
69 schema:name Natural Variation in Freezing Tolerance and Cold Acclimation Response in Arabidopsis thaliana and Related Species
70 schema:pagination 81-98
71 schema:productId N0e83677823a54e6ea38d9be742dd93fa
72 N902fa78fa6b94a93a81ab7793217582b
73 Ncea64c6685f248e88f7abbb801fa26c4
74 schema:publisher N76c03df745404d8bb9ef1f7a5f332b47
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107414774
76 https://doi.org/10.1007/978-981-13-1244-1_5
77 schema:sdDatePublished 2022-05-10T10:50
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher Nb1ed8034c5ce4cb1ba384f0c9c619b43
80 schema:url https://doi.org/10.1007/978-981-13-1244-1_5
81 sgo:license sg:explorer/license/
82 sgo:sdDataset chapters
83 rdf:type schema:Chapter
84 N003c748f71f24f6c93d2d104e2e0c662 rdf:first N2f97d13334f74147b681fc44ce858f1b
85 rdf:rest N33329a0155f54bcea8dba34d37949eec
86 N06abfdab971e44c2bddaa3d0e60aa544 rdf:first sg:person.01316643071.61
87 rdf:rest N1529c37c655b4e53955d1730b0b2e032
88 N0e83677823a54e6ea38d9be742dd93fa schema:name pubmed_id
89 schema:value 30288705
90 rdf:type schema:PropertyValue
91 N1529c37c655b4e53955d1730b0b2e032 rdf:first sg:person.01353252733.38
92 rdf:rest N793b1feef45b4bd79bedae8ce26a5886
93 N1bcd42d1a2a746faa09bbaf0fd45c15a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Plant Proteins
95 rdf:type schema:DefinedTerm
96 N2f97d13334f74147b681fc44ce858f1b schema:familyName Iwaya-Inoue
97 schema:givenName Mari
98 rdf:type schema:Person
99 N309c3f38b57246ae8327b2b0f72b4a80 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Energy Metabolism
101 rdf:type schema:DefinedTerm
102 N33329a0155f54bcea8dba34d37949eec rdf:first Nc5ebe7ac815244fda368bdbf31231968
103 rdf:rest Na0ccbca6be4e45f994316a3bc595b28b
104 N4c38629e53c147d0be8a6423e51994e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Cold Shock Proteins and Peptides
106 rdf:type schema:DefinedTerm
107 N5e79947620b941a98624df3c982e41eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Genomics
109 rdf:type schema:DefinedTerm
110 N62cb4138eebc43ceb03f27d5dddba139 rdf:first sg:person.0636364224.44
111 rdf:rest rdf:nil
112 N6d8ca8d0236748d4bcdb2faad0c59598 schema:isbn 978-981-13-1243-4
113 978-981-13-1244-1
114 schema:name Survival Strategies in Extreme Cold and Desiccation
115 rdf:type schema:Book
116 N6f8e23a177d3432e979e3a5c8001003e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Gene Expression Regulation, Plant
118 rdf:type schema:DefinedTerm
119 N76c03df745404d8bb9ef1f7a5f332b47 schema:name Springer Nature
120 rdf:type schema:Organisation
121 N793b1feef45b4bd79bedae8ce26a5886 rdf:first sg:person.0633132075.84
122 rdf:rest N62cb4138eebc43ceb03f27d5dddba139
123 N8918801ae28f4e229cf54919ab77f2eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Species Specificity
125 rdf:type schema:DefinedTerm
126 N8aa5f792e4d048d6a5a05e108dde54f9 rdf:first sg:person.0627062115.49
127 rdf:rest N06abfdab971e44c2bddaa3d0e60aa544
128 N902fa78fa6b94a93a81ab7793217582b schema:name doi
129 schema:value 10.1007/978-981-13-1244-1_5
130 rdf:type schema:PropertyValue
131 N93c6d1eb77994f05b85500f712920633 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Signal Transduction
133 rdf:type schema:DefinedTerm
134 N9579f3a390fc485c8bf98223bc912676 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Acclimatization
136 rdf:type schema:DefinedTerm
137 Na0ccbca6be4e45f994316a3bc595b28b rdf:first Nbfda3b03cf6a4595ab92183078ad34a1
138 rdf:rest rdf:nil
139 Nae73ff3a70114c488bf7fda729e71038 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Arabidopsis
141 rdf:type schema:DefinedTerm
142 Nae8f84fa211a4f469a12d1e821af6651 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Freezing
144 rdf:type schema:DefinedTerm
145 Nb1ed8034c5ce4cb1ba384f0c9c619b43 schema:name Springer Nature - SN SciGraph project
146 rdf:type schema:Organization
147 Nb32013aa536b4935b2a9352bcbd24c7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Brassicaceae
149 rdf:type schema:DefinedTerm
150 Nbfda3b03cf6a4595ab92183078ad34a1 schema:familyName Uemura
151 schema:givenName Matsuo
152 rdf:type schema:Person
153 Nc5ebe7ac815244fda368bdbf31231968 schema:familyName Sakurai
154 schema:givenName Minoru
155 rdf:type schema:Person
156 Ncea64c6685f248e88f7abbb801fa26c4 schema:name dimensions_id
157 schema:value pub.1107414774
158 rdf:type schema:PropertyValue
159 Nd6e470d0259445328108753c3681baab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Metabolomics
161 rdf:type schema:DefinedTerm
162 Ned37a708e1674be5aa4ff0726d8c3c11 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Cold-Shock Response
164 rdf:type schema:DefinedTerm
165 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
166 schema:name Medical and Health Sciences
167 rdf:type schema:DefinedTerm
168 sg:person.01316643071.61 schema:affiliation grid-institutes:None
169 schema:familyName Lee
170 schema:givenName Yang Ping
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316643071.61
172 rdf:type schema:Person
173 sg:person.01353252733.38 schema:affiliation grid-institutes:grid.418390.7
174 schema:familyName Erban
175 schema:givenName Alexander
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353252733.38
177 rdf:type schema:Person
178 sg:person.0627062115.49 schema:affiliation grid-institutes:grid.418390.7
179 schema:familyName Zuther
180 schema:givenName Ellen
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627062115.49
182 rdf:type schema:Person
183 sg:person.0633132075.84 schema:affiliation grid-institutes:grid.418390.7
184 schema:familyName Kopka
185 schema:givenName Joachim
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633132075.84
187 rdf:type schema:Person
188 sg:person.0636364224.44 schema:affiliation grid-institutes:grid.418390.7
189 schema:familyName Hincha
190 schema:givenName Dirk K.
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636364224.44
192 rdf:type schema:Person
193 grid-institutes:None schema:alternateName FELDA Global Ventures Research and Development, Kuala Lumpur, Malaysia
194 schema:name FELDA Global Ventures Research and Development, Kuala Lumpur, Malaysia
195 Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
196 rdf:type schema:Organization
197 grid-institutes:grid.418390.7 schema:alternateName Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
198 schema:name Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
199 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...