Joint Adaptive Beamforming to Enhance Noise Suppression for Medical Ultrasound Imaging View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2019

AUTHORS

Acacio J. Zimbico , Diogo W. Granado , Fabio K. Schneider , Joaquim M. Maia , Amauri A. Assef , Nivaldo S. Junior , Eduardo T. Costa

ABSTRACT

In this work we suggest a combination of two beamformers (BFs) to improve the array noise-suppression abilities using the moments of the eigenvalues (EV) of the data covariance matrix (CM). The eigenspace minimum variance (EMV) BF suffers from the input signal with low SNR, while with high SNR, the dominant mode rejection (DMR) BF degrades. Thus, the random matrix theory (RMT) is used based on the principle that the EV of CM allow predicting the actual moments of the EV so that the SNR level of the proper input data is estimated based on a specified threshold. Compared to the threshold, the higher values of the EV function are associated with the input signal with higher SNR level, so that the EMV BF is adopted, otherwise, the DMR BF. The raw data of the multipurpose phantom (84-317) were acquired using the Verasonics ultrasound system with linear array transducer L11-4v. The performance of the proposed BF (EMV + DMR) was evaluated in terms of lateral resolution using the full width at half maximum (FWHM), peak sidelobe level (PSL) and contrast (CR). Furthermore, the resolution and contrast were improved, indicating that the proposed approach can improve the image quality. More... »

PAGES

233-237

Book

TITLE

World Congress on Medical Physics and Biomedical Engineering 2018

ISBN

978-981-10-9034-9
978-981-10-9035-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-981-10-9035-6_42

DOI

http://dx.doi.org/10.1007/978-981-10-9035-6_42

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104268134


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Eduardo Mondlane University", 
          "id": "https://www.grid.ac/institutes/grid.8295.6", 
          "name": [
            "Eduardo Mondlane University (UEM)", 
            "Federal University of Technology Parana (UTFPR)"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zimbico", 
        "givenName": "Acacio J.", 
        "id": "sg:person.016205102745.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016205102745.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Federal University of Technology Parana (UTFPR)"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Granado", 
        "givenName": "Diogo W.", 
        "id": "sg:person.012247731343.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012247731343.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Federal University of Technology Parana (UTFPR)"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schneider", 
        "givenName": "Fabio K.", 
        "id": "sg:person.0700134323.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700134323.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Federal University of Technology Parana (UTFPR)"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maia", 
        "givenName": "Joaquim M.", 
        "id": "sg:person.0761274144.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761274144.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Federal University of Technology Parana (UTFPR)"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Assef", 
        "givenName": "Amauri A.", 
        "id": "sg:person.0713160744.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713160744.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Federal University of Technology Parana (UTFPR)"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Junior", 
        "givenName": "Nivaldo S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State University of Campinas", 
          "id": "https://www.grid.ac/institutes/grid.411087.b", 
          "name": [
            "State University of Campinas (UNICAMP)"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Costa", 
        "givenName": "Eduardo T.", 
        "id": "sg:person.010146026462.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010146026462.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1109/proc.1969.7278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061440655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2008.929938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061652174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2007.907884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061800879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.2346128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062312258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ultsym.2008.0258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093385384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ultsym.2005.1603066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093769432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/cp.2015.1006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098752180"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019", 
    "datePublishedReg": "2019-01-01", 
    "description": "In this work we suggest a combination of two beamformers (BFs) to improve the array noise-suppression abilities using the moments of the eigenvalues (EV) of the data covariance matrix (CM). The eigenspace minimum variance (EMV) BF suffers from the input signal with low SNR, while with high SNR, the dominant mode rejection (DMR) BF degrades. Thus, the random matrix theory (RMT) is used based on the principle that the EV of CM allow predicting the actual moments of the EV so that the SNR level of the proper input data is estimated based on a specified threshold. Compared to the threshold, the higher values of the EV function are associated with the input signal with higher SNR level, so that the EMV BF is adopted, otherwise, the DMR BF. The raw data of the multipurpose phantom (84-317) were acquired using the Verasonics ultrasound system with linear array transducer L11-4v. The performance of the proposed BF (EMV + DMR) was evaluated in terms of lateral resolution using the full width at half maximum (FWHM), peak sidelobe level (PSL) and contrast (CR). Furthermore, the resolution and contrast were improved, indicating that the proposed approach can improve the image quality.", 
    "editor": [
      {
        "familyName": "Lhotska", 
        "givenName": "Lenka", 
        "type": "Person"
      }, 
      {
        "familyName": "Sukupova", 
        "givenName": "Lucie", 
        "type": "Person"
      }, 
      {
        "familyName": "Lackovi\u0107", 
        "givenName": "Igor", 
        "type": "Person"
      }, 
      {
        "familyName": "Ibbott", 
        "givenName": "Geoffrey S.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-981-10-9035-6_42", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-981-10-9034-9", 
        "978-981-10-9035-6"
      ], 
      "name": "World Congress on Medical Physics and Biomedical Engineering 2018", 
      "type": "Book"
    }, 
    "name": "Joint Adaptive Beamforming to Enhance Noise Suppression for Medical Ultrasound Imaging", 
    "pagination": "233-237", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-981-10-9035-6_42"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c953c904ddbeabbcdbd8f0a588377b32bf8c65cc244dae91426be6c53a8cf200"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104268134"
        ]
      }
    ], 
    "publisher": {
      "location": "Singapore", 
      "name": "Springer Singapore", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-981-10-9035-6_42", 
      "https://app.dimensions.ai/details/publication/pub.1104268134"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T17:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000604.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-981-10-9035-6_42"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-9035-6_42'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-9035-6_42'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-9035-6_42'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-9035-6_42'


 

This table displays all metadata directly associated to this object as RDF triples.

156 TRIPLES      23 PREDICATES      34 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-981-10-9035-6_42 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N19c2d4f03f8f421cb3e8086326381c3e
4 schema:citation https://doi.org/10.1049/cp.2015.1006
5 https://doi.org/10.1109/proc.1969.7278
6 https://doi.org/10.1109/tit.2008.929938
7 https://doi.org/10.1109/tsp.2007.907884
8 https://doi.org/10.1109/ultsym.2005.1603066
9 https://doi.org/10.1109/ultsym.2008.0258
10 https://doi.org/10.1121/1.2346128
11 schema:datePublished 2019
12 schema:datePublishedReg 2019-01-01
13 schema:description In this work we suggest a combination of two beamformers (BFs) to improve the array noise-suppression abilities using the moments of the eigenvalues (EV) of the data covariance matrix (CM). The eigenspace minimum variance (EMV) BF suffers from the input signal with low SNR, while with high SNR, the dominant mode rejection (DMR) BF degrades. Thus, the random matrix theory (RMT) is used based on the principle that the EV of CM allow predicting the actual moments of the EV so that the SNR level of the proper input data is estimated based on a specified threshold. Compared to the threshold, the higher values of the EV function are associated with the input signal with higher SNR level, so that the EMV BF is adopted, otherwise, the DMR BF. The raw data of the multipurpose phantom (84-317) were acquired using the Verasonics ultrasound system with linear array transducer L11-4v. The performance of the proposed BF (EMV + DMR) was evaluated in terms of lateral resolution using the full width at half maximum (FWHM), peak sidelobe level (PSL) and contrast (CR). Furthermore, the resolution and contrast were improved, indicating that the proposed approach can improve the image quality.
14 schema:editor Nee7b8d6cbab0487f960c499321ae8fcb
15 schema:genre chapter
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N246736caa0fd4e98b6e604ccee533095
19 schema:name Joint Adaptive Beamforming to Enhance Noise Suppression for Medical Ultrasound Imaging
20 schema:pagination 233-237
21 schema:productId N00c49a1e5d244fd6b944207c8bf9734a
22 N44f9bf9e119a4a6894435a7672af576b
23 Na238bbf6ffe342e38e4c579f8adbec99
24 schema:publisher Ne0b04e2217a64ab8b6a4c1679f12f0a1
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104268134
26 https://doi.org/10.1007/978-981-10-9035-6_42
27 schema:sdDatePublished 2019-04-15T17:53
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N5bb407ddb5554d5080e3371eb7393804
30 schema:url http://link.springer.com/10.1007/978-981-10-9035-6_42
31 sgo:license sg:explorer/license/
32 sgo:sdDataset chapters
33 rdf:type schema:Chapter
34 N00164eeb85314bbe8a72bb80c5efe954 rdf:first sg:person.010146026462.44
35 rdf:rest rdf:nil
36 N00c49a1e5d244fd6b944207c8bf9734a schema:name readcube_id
37 schema:value c953c904ddbeabbcdbd8f0a588377b32bf8c65cc244dae91426be6c53a8cf200
38 rdf:type schema:PropertyValue
39 N0cde08eee1db4ee9b0f3634dacb5a8ed schema:name Federal University of Technology Parana (UTFPR)
40 rdf:type schema:Organization
41 N15e792190d454daf886313033a7222b1 rdf:first sg:person.012247731343.45
42 rdf:rest N466294d03a444f8f941f162eb716644d
43 N1821ff2bcb414c8c8603ae3c15ed63e7 rdf:first sg:person.0761274144.76
44 rdf:rest Nd7e1884a0fb342eda4428b65c377a25a
45 N19c2d4f03f8f421cb3e8086326381c3e rdf:first sg:person.016205102745.19
46 rdf:rest N15e792190d454daf886313033a7222b1
47 N20338966da9a4cdca874ec20dff28ab7 rdf:first N2c3d541ed90f4fcd86f5fa6fe9f465c6
48 rdf:rest N6aec5ea4c5d84c7f91be77c66e4e6d84
49 N246736caa0fd4e98b6e604ccee533095 schema:isbn 978-981-10-9034-9
50 978-981-10-9035-6
51 schema:name World Congress on Medical Physics and Biomedical Engineering 2018
52 rdf:type schema:Book
53 N2c3d541ed90f4fcd86f5fa6fe9f465c6 schema:familyName Sukupova
54 schema:givenName Lucie
55 rdf:type schema:Person
56 N2e43fc1258204e46ba44bcd823e2db6c schema:name Federal University of Technology Parana (UTFPR)
57 rdf:type schema:Organization
58 N3a427dd826b149b3998575b39d8f168b rdf:first N563e5b29835840a1830ae47008b698a9
59 rdf:rest N00164eeb85314bbe8a72bb80c5efe954
60 N44f9bf9e119a4a6894435a7672af576b schema:name doi
61 schema:value 10.1007/978-981-10-9035-6_42
62 rdf:type schema:PropertyValue
63 N466294d03a444f8f941f162eb716644d rdf:first sg:person.0700134323.99
64 rdf:rest N1821ff2bcb414c8c8603ae3c15ed63e7
65 N563e5b29835840a1830ae47008b698a9 schema:affiliation N89f96c741a564383a80b2ea36e1c91c5
66 schema:familyName Junior
67 schema:givenName Nivaldo S.
68 rdf:type schema:Person
69 N5bb407ddb5554d5080e3371eb7393804 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N6aec5ea4c5d84c7f91be77c66e4e6d84 rdf:first N7f56ec97858f49b4b9ab5e63266e2af3
72 rdf:rest Nab1c6d9572a44ee898ef663ab0f51573
73 N6e1af635b9044f40b56294922a6093dc schema:familyName Lhotska
74 schema:givenName Lenka
75 rdf:type schema:Person
76 N767dc2c5a9354afb8f52790d38589323 schema:name Federal University of Technology Parana (UTFPR)
77 rdf:type schema:Organization
78 N7f56ec97858f49b4b9ab5e63266e2af3 schema:familyName Lacković
79 schema:givenName Igor
80 rdf:type schema:Person
81 N89f96c741a564383a80b2ea36e1c91c5 schema:name Federal University of Technology Parana (UTFPR)
82 rdf:type schema:Organization
83 Na238bbf6ffe342e38e4c579f8adbec99 schema:name dimensions_id
84 schema:value pub.1104268134
85 rdf:type schema:PropertyValue
86 Nab1c6d9572a44ee898ef663ab0f51573 rdf:first Nfaafa21215474a5ebefc88da65d3ba67
87 rdf:rest rdf:nil
88 Nb0700feb32054e4abb9f395015491a93 schema:name Federal University of Technology Parana (UTFPR)
89 rdf:type schema:Organization
90 Nd7e1884a0fb342eda4428b65c377a25a rdf:first sg:person.0713160744.99
91 rdf:rest N3a427dd826b149b3998575b39d8f168b
92 Ne0b04e2217a64ab8b6a4c1679f12f0a1 schema:location Singapore
93 schema:name Springer Singapore
94 rdf:type schema:Organisation
95 Nee7b8d6cbab0487f960c499321ae8fcb rdf:first N6e1af635b9044f40b56294922a6093dc
96 rdf:rest N20338966da9a4cdca874ec20dff28ab7
97 Nfaafa21215474a5ebefc88da65d3ba67 schema:familyName Ibbott
98 schema:givenName Geoffrey S.
99 rdf:type schema:Person
100 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
101 schema:name Information and Computing Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
104 schema:name Artificial Intelligence and Image Processing
105 rdf:type schema:DefinedTerm
106 sg:person.010146026462.44 schema:affiliation https://www.grid.ac/institutes/grid.411087.b
107 schema:familyName Costa
108 schema:givenName Eduardo T.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010146026462.44
110 rdf:type schema:Person
111 sg:person.012247731343.45 schema:affiliation N0cde08eee1db4ee9b0f3634dacb5a8ed
112 schema:familyName Granado
113 schema:givenName Diogo W.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012247731343.45
115 rdf:type schema:Person
116 sg:person.016205102745.19 schema:affiliation https://www.grid.ac/institutes/grid.8295.6
117 schema:familyName Zimbico
118 schema:givenName Acacio J.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016205102745.19
120 rdf:type schema:Person
121 sg:person.0700134323.99 schema:affiliation N767dc2c5a9354afb8f52790d38589323
122 schema:familyName Schneider
123 schema:givenName Fabio K.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700134323.99
125 rdf:type schema:Person
126 sg:person.0713160744.99 schema:affiliation N2e43fc1258204e46ba44bcd823e2db6c
127 schema:familyName Assef
128 schema:givenName Amauri A.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713160744.99
130 rdf:type schema:Person
131 sg:person.0761274144.76 schema:affiliation Nb0700feb32054e4abb9f395015491a93
132 schema:familyName Maia
133 schema:givenName Joaquim M.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761274144.76
135 rdf:type schema:Person
136 https://doi.org/10.1049/cp.2015.1006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098752180
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/proc.1969.7278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061440655
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/tit.2008.929938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061652174
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/tsp.2007.907884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061800879
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/ultsym.2005.1603066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093769432
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/ultsym.2008.0258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093385384
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1121/1.2346128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062312258
149 rdf:type schema:CreativeWork
150 https://www.grid.ac/institutes/grid.411087.b schema:alternateName State University of Campinas
151 schema:name State University of Campinas (UNICAMP)
152 rdf:type schema:Organization
153 https://www.grid.ac/institutes/grid.8295.6 schema:alternateName Eduardo Mondlane University
154 schema:name Eduardo Mondlane University (UEM)
155 Federal University of Technology Parana (UTFPR)
156 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...