Possible Clinical Use of Big Data: Personal Brain Connectomics View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-03-28

AUTHORS

Dong Soo Lee

ABSTRACT

The biggest data is brain imaging data, which waited for clinical use during the last three decades. Topographic data interpretation prevailed for the first two decades, and only during the last decade, connectivity or connectomics data began to be analyzed properly. Owing to topological data interpretation and timely introduction of likelihood method based on hierarchical generalized linear model, we now foresee the clinical use of personal connectomics for classification and prediction of disease prognosis for brain diseases without any clue by currently available diagnostic methods. More... »

PAGES

23-31

Book

TITLE

Proceedings of the Pacific Rim Statistical Conference for Production Engineering

ISBN

978-981-10-8167-5
978-981-10-8168-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-981-10-8168-2_3

DOI

http://dx.doi.org/10.1007/978-981-10-8168-2_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101794051


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Korean Brain Research Institute, Daegu, Korea", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Nuclear Medicine, Department of Molecular Medicine and Biopharmaceutical Sciences, College of Medicine, Seoul National University (SNU) and SNU Hospital, Seoul, Korea", 
            "Korean Brain Research Institute, Daegu, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Dong Soo", 
        "id": "sg:person.015617314175.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2018-03-28", 
    "datePublishedReg": "2018-03-28", 
    "description": "The biggest data is brain imaging data, which waited for clinical use during the last three decades. Topographic data interpretation prevailed for the first two decades, and only during the last decade, connectivity or connectomics data began to be analyzed properly. Owing to topological data interpretation and timely introduction of likelihood method based on hierarchical generalized linear model, we now foresee the clinical use of personal connectomics for classification and prediction of disease prognosis for brain diseases without any clue by currently available diagnostic methods.", 
    "editor": [
      {
        "familyName": "Choi", 
        "givenName": "Dongseok", 
        "type": "Person"
      }, 
      {
        "familyName": "Jang", 
        "givenName": "Daeheung", 
        "type": "Person"
      }, 
      {
        "familyName": "Lai", 
        "givenName": "Tze Leung", 
        "type": "Person"
      }, 
      {
        "familyName": "Lee", 
        "givenName": "Youngjo", 
        "type": "Person"
      }, 
      {
        "familyName": "Lu", 
        "givenName": "Ying", 
        "type": "Person"
      }, 
      {
        "familyName": "Ni", 
        "givenName": "Jun", 
        "type": "Person"
      }, 
      {
        "familyName": "Qian", 
        "givenName": "Peter", 
        "type": "Person"
      }, 
      {
        "familyName": "Qiu", 
        "givenName": "Peihua", 
        "type": "Person"
      }, 
      {
        "familyName": "Tiao", 
        "givenName": "George", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-981-10-8168-2_3", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-981-10-8167-5", 
        "978-981-10-8168-2"
      ], 
      "name": "Proceedings of the Pacific Rim Statistical Conference for Production Engineering", 
      "type": "Book"
    }, 
    "keywords": [
      "big data", 
      "connectomic data", 
      "clinical use", 
      "brain connectomics", 
      "data interpretation", 
      "possible clinical use", 
      "available diagnostic methods", 
      "connectomics", 
      "disease prognosis", 
      "brain diseases", 
      "classification", 
      "connectivity", 
      "timely introduction", 
      "data", 
      "diagnostic methods", 
      "last decade", 
      "method", 
      "use", 
      "prognosis", 
      "disease", 
      "prediction", 
      "brain", 
      "model", 
      "decades", 
      "linear model", 
      "interpretation", 
      "clues", 
      "introduction", 
      "likelihood method"
    ], 
    "name": "Possible Clinical Use of Big Data: Personal Brain Connectomics", 
    "pagination": "23-31", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101794051"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-981-10-8168-2_3"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-981-10-8168-2_3", 
      "https://app.dimensions.ai/details/publication/pub.1101794051"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T06:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_396.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-981-10-8168-2_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-8168-2_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-8168-2_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-8168-2_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-8168-2_3'


 

This table displays all metadata directly associated to this object as RDF triples.

129 TRIPLES      22 PREDICATES      53 URIs      46 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-981-10-8168-2_3 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author N762a8163ab7746abb7a275fd2f7da5a6
4 schema:datePublished 2018-03-28
5 schema:datePublishedReg 2018-03-28
6 schema:description The biggest data is brain imaging data, which waited for clinical use during the last three decades. Topographic data interpretation prevailed for the first two decades, and only during the last decade, connectivity or connectomics data began to be analyzed properly. Owing to topological data interpretation and timely introduction of likelihood method based on hierarchical generalized linear model, we now foresee the clinical use of personal connectomics for classification and prediction of disease prognosis for brain diseases without any clue by currently available diagnostic methods.
7 schema:editor N13f3577d66684d938211660108bc2f18
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N35f3c72166e04096ad05a7adebe0d4d5
11 schema:keywords available diagnostic methods
12 big data
13 brain
14 brain connectomics
15 brain diseases
16 classification
17 clinical use
18 clues
19 connectivity
20 connectomic data
21 connectomics
22 data
23 data interpretation
24 decades
25 diagnostic methods
26 disease
27 disease prognosis
28 interpretation
29 introduction
30 last decade
31 likelihood method
32 linear model
33 method
34 model
35 possible clinical use
36 prediction
37 prognosis
38 timely introduction
39 use
40 schema:name Possible Clinical Use of Big Data: Personal Brain Connectomics
41 schema:pagination 23-31
42 schema:productId Nbab14f1cef7a4882a0ad71e83a1ccb10
43 Nfbeffc2d825341268c5d03544504add8
44 schema:publisher Nbca7907ba0334f07b1074936f88be7ec
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101794051
46 https://doi.org/10.1007/978-981-10-8168-2_3
47 schema:sdDatePublished 2022-10-01T06:58
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N76b2d1c1b0484cf79f21fd45ef3f066a
50 schema:url https://doi.org/10.1007/978-981-10-8168-2_3
51 sgo:license sg:explorer/license/
52 sgo:sdDataset chapters
53 rdf:type schema:Chapter
54 N01e2b9db335f4218b12b9430a98ed8fa rdf:first N596c149c0eb14250832bd82d21b11ac0
55 rdf:rest rdf:nil
56 N11cf313efae54a3599227004ef7bd091 schema:familyName Qiu
57 schema:givenName Peihua
58 rdf:type schema:Person
59 N13f3577d66684d938211660108bc2f18 rdf:first N99fbe064ca7f4ebb81e6c84b6544c663
60 rdf:rest N76dd03d029ae491d83d9f6bf1c777c87
61 N1856787ba907474ca970273966857a1f rdf:first N91e8742e9d4e42a1bc5827d35a2e1843
62 rdf:rest N63f64a77acf740bc978a418ee52f5658
63 N1e2c12f6258f40aab924a2e8d4a28b88 schema:familyName Qian
64 schema:givenName Peter
65 rdf:type schema:Person
66 N330cdfab1763454080c29caf8296a826 schema:familyName Lu
67 schema:givenName Ying
68 rdf:type schema:Person
69 N35f3c72166e04096ad05a7adebe0d4d5 schema:isbn 978-981-10-8167-5
70 978-981-10-8168-2
71 schema:name Proceedings of the Pacific Rim Statistical Conference for Production Engineering
72 rdf:type schema:Book
73 N40007baf854e40a4b77fee04e314d267 schema:familyName Jang
74 schema:givenName Daeheung
75 rdf:type schema:Person
76 N596c149c0eb14250832bd82d21b11ac0 schema:familyName Tiao
77 schema:givenName George
78 rdf:type schema:Person
79 N5b2940a820fa463f8f8ca5b5af49ce5e rdf:first N1e2c12f6258f40aab924a2e8d4a28b88
80 rdf:rest N90be3451823749809eb9b169b042d126
81 N63f64a77acf740bc978a418ee52f5658 rdf:first Nf4481eda474a408a97565ee19d7d2afa
82 rdf:rest N87ec029e9a6841669705cf979573fba9
83 N762a8163ab7746abb7a275fd2f7da5a6 rdf:first sg:person.015617314175.88
84 rdf:rest rdf:nil
85 N76b2d1c1b0484cf79f21fd45ef3f066a schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 N76dd03d029ae491d83d9f6bf1c777c87 rdf:first N40007baf854e40a4b77fee04e314d267
88 rdf:rest N1856787ba907474ca970273966857a1f
89 N87ec029e9a6841669705cf979573fba9 rdf:first N330cdfab1763454080c29caf8296a826
90 rdf:rest Na9be6f17a47942efaab655b67286f7aa
91 N90be3451823749809eb9b169b042d126 rdf:first N11cf313efae54a3599227004ef7bd091
92 rdf:rest N01e2b9db335f4218b12b9430a98ed8fa
93 N91e8742e9d4e42a1bc5827d35a2e1843 schema:familyName Lai
94 schema:givenName Tze Leung
95 rdf:type schema:Person
96 N99fbe064ca7f4ebb81e6c84b6544c663 schema:familyName Choi
97 schema:givenName Dongseok
98 rdf:type schema:Person
99 Na3d82569b3b54c35bc04468cf2f7c00d schema:familyName Ni
100 schema:givenName Jun
101 rdf:type schema:Person
102 Na9be6f17a47942efaab655b67286f7aa rdf:first Na3d82569b3b54c35bc04468cf2f7c00d
103 rdf:rest N5b2940a820fa463f8f8ca5b5af49ce5e
104 Nbab14f1cef7a4882a0ad71e83a1ccb10 schema:name dimensions_id
105 schema:value pub.1101794051
106 rdf:type schema:PropertyValue
107 Nbca7907ba0334f07b1074936f88be7ec schema:name Springer Nature
108 rdf:type schema:Organisation
109 Nf4481eda474a408a97565ee19d7d2afa schema:familyName Lee
110 schema:givenName Youngjo
111 rdf:type schema:Person
112 Nfbeffc2d825341268c5d03544504add8 schema:name doi
113 schema:value 10.1007/978-981-10-8168-2_3
114 rdf:type schema:PropertyValue
115 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
116 schema:name Medical and Health Sciences
117 rdf:type schema:DefinedTerm
118 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
119 schema:name Neurosciences
120 rdf:type schema:DefinedTerm
121 sg:person.015617314175.88 schema:affiliation grid-institutes:None
122 schema:familyName Lee
123 schema:givenName Dong Soo
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88
125 rdf:type schema:Person
126 grid-institutes:None schema:alternateName Korean Brain Research Institute, Daegu, Korea
127 schema:name Department of Nuclear Medicine, Department of Molecular Medicine and Biopharmaceutical Sciences, College of Medicine, Seoul National University (SNU) and SNU Hospital, Seoul, Korea
128 Korean Brain Research Institute, Daegu, Korea
129 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...