Big Data Services Requirements Analysis View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-01-05

AUTHORS

Affan Yasin , Lin Liu , Zhanqiang Cao , Jianmin Wang , Yingbo Liu , Tan Sheau Ling

ABSTRACT

The development of the Internet and cloud computing has set up a matured environment for developing and deploying big data services. The main objective of requirements engineering for big data is to capture big data service users’ needs and provider’s capabilities, and to identify value added service use cases for big data technology in a given organizational context. Major objectives may include: collect real-time data about the world, search for useful information in large data sets, gain insights about given problems by data analytics, predict possible trend of interesting subjects, and make decisions for the next immediate actions. In this paper, we propose a big data service requirements analysis framework, which aims to provide useful guidelines for eliciting service requirements, selecting the right services architectures and evaluate the available technological services implementations. For services under operation, we suggest data analysis to service logs to elicit user’s changing needs, to evaluate the run-time service performance and to check compliance to general standards and domain-specific regulations. Example cases from eHealth and industry 4.0 are discussed to illustrate the proposed service requirements framework. More... »

PAGES

3-14

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-981-10-7796-8_1

DOI

http://dx.doi.org/10.1007/978-981-10-7796-8_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100167682


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0803", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computer Software", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, 100084, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yasin", 
        "givenName": "Affan", 
        "id": "sg:person.016344044245.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016344044245.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, 100084, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Lin", 
        "id": "sg:person.016135127503.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016135127503.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, 100084, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cao", 
        "givenName": "Zhanqiang", 
        "id": "sg:person.014130132243.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014130132243.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, 100084, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jianmin", 
        "id": "sg:person.012303351315.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303351315.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, 100084, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Yingbo", 
        "id": "sg:person.016541066562.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016541066562.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ecogeneration International PTE Ltd., Singapore, Singapore", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "School of Software, Tsinghua University, 100084, Beijing, China", 
            "Ecogeneration International PTE Ltd., Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ling", 
        "givenName": "Tan Sheau", 
        "type": "Person"
      }
    ], 
    "datePublished": "2018-01-05", 
    "datePublishedReg": "2018-01-05", 
    "description": "Abstract\nThe development of the Internet and cloud computing has set up a matured environment for developing and deploying big data services. The main objective of requirements engineering for big data is to capture big data service users\u2019 needs and provider\u2019s capabilities, and to identify value added service use cases for big data technology in a given organizational context. Major objectives may include: collect real-time data about the world, search for useful information in large data sets, gain insights about given problems by data analytics, predict possible trend of interesting subjects, and make decisions for the next immediate actions. In this paper, we propose a big data service requirements analysis framework, which aims to provide useful guidelines for eliciting service requirements, selecting the right services architectures and evaluate the available technological services implementations. For services under operation, we suggest data analysis to service logs to elicit user\u2019s changing needs, to evaluate the run-time service performance and to check compliance to general standards and domain-specific regulations. Example cases from eHealth and industry 4.0 are discussed to illustrate the proposed service requirements framework.", 
    "editor": [
      {
        "familyName": "Kamalrudin", 
        "givenName": "Massila", 
        "type": "Person"
      }, 
      {
        "familyName": "Ahmad", 
        "givenName": "Sabrina", 
        "type": "Person"
      }, 
      {
        "familyName": "Ikram", 
        "givenName": "Naveed", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-981-10-7796-8_1", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-981-10-7795-1", 
        "978-981-10-7796-8"
      ], 
      "name": "Requirements Engineering for Internet of Things", 
      "type": "Book"
    }, 
    "keywords": [
      "big data services", 
      "service use cases", 
      "real-time data", 
      "requirements analysis framework", 
      "big data technology", 
      "service requirements analysis", 
      "large data sets", 
      "domain-specific regulations", 
      "cloud computing", 
      "data technology", 
      "data analytics", 
      "use cases", 
      "requirements analysis", 
      "elicit users", 
      "big data", 
      "requirements framework", 
      "data services", 
      "service requirements", 
      "Industry 4.0", 
      "user needs", 
      "right services", 
      "service implementation", 
      "service logs", 
      "analysis framework", 
      "data sets", 
      "service performance", 
      "services", 
      "example case", 
      "useful information", 
      "computing", 
      "data analysis", 
      "framework", 
      "requirements", 
      "Internet", 
      "analytics", 
      "service users' needs", 
      "users", 
      "eHealth", 
      "main objective", 
      "implementation", 
      "organizational context", 
      "major objective", 
      "capability", 
      "technology", 
      "useful guidelines", 
      "need", 
      "information", 
      "interesting subject", 
      "set", 
      "environment", 
      "log", 
      "immediate action", 
      "performance", 
      "operation", 
      "data", 
      "decisions", 
      "general standards", 
      "objective", 
      "standards", 
      "context", 
      "world", 
      "analysis", 
      "possible trends", 
      "development", 
      "cases", 
      "compliance", 
      "trends", 
      "insights", 
      "guidelines", 
      "action", 
      "values", 
      "subjects", 
      "regulation", 
      "paper", 
      "problem", 
      "big data service users\u2019 needs", 
      "data service users\u2019 needs", 
      "next immediate actions", 
      "big data service requirements analysis framework", 
      "data service requirements analysis framework", 
      "service requirements analysis framework", 
      "available technological services implementations", 
      "technological services implementations", 
      "run-time service performance", 
      "service requirements framework", 
      "Big Data Services Requirements Analysis", 
      "Data Services Requirements Analysis"
    ], 
    "name": "Big Data Services Requirements Analysis", 
    "pagination": "3-14", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100167682"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-981-10-7796-8_1"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-981-10-7796-8_1", 
      "https://app.dimensions.ai/details/publication/pub.1100167682"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_287.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-981-10-7796-8_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-7796-8_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-7796-8_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-7796-8_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-7796-8_1'


 

This table displays all metadata directly associated to this object as RDF triples.

199 TRIPLES      23 PREDICATES      112 URIs      104 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-981-10-7796-8_1 schema:about anzsrc-for:08
2 anzsrc-for:0803
3 anzsrc-for:0806
4 schema:author N5ac96c4bda074ae586188003ab13c6f8
5 schema:datePublished 2018-01-05
6 schema:datePublishedReg 2018-01-05
7 schema:description Abstract The development of the Internet and cloud computing has set up a matured environment for developing and deploying big data services. The main objective of requirements engineering for big data is to capture big data service users’ needs and provider’s capabilities, and to identify value added service use cases for big data technology in a given organizational context. Major objectives may include: collect real-time data about the world, search for useful information in large data sets, gain insights about given problems by data analytics, predict possible trend of interesting subjects, and make decisions for the next immediate actions. In this paper, we propose a big data service requirements analysis framework, which aims to provide useful guidelines for eliciting service requirements, selecting the right services architectures and evaluate the available technological services implementations. For services under operation, we suggest data analysis to service logs to elicit user’s changing needs, to evaluate the run-time service performance and to check compliance to general standards and domain-specific regulations. Example cases from eHealth and industry 4.0 are discussed to illustrate the proposed service requirements framework.
8 schema:editor Ne1ea78ae66b84751b9ce0d2564286645
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf Ne90529a3411440d2bdf85ef9333953f7
13 schema:keywords Big Data Services Requirements Analysis
14 Data Services Requirements Analysis
15 Industry 4.0
16 Internet
17 action
18 analysis
19 analysis framework
20 analytics
21 available technological services implementations
22 big data
23 big data service requirements analysis framework
24 big data service users’ needs
25 big data services
26 big data technology
27 capability
28 cases
29 cloud computing
30 compliance
31 computing
32 context
33 data
34 data analysis
35 data analytics
36 data service requirements analysis framework
37 data service users’ needs
38 data services
39 data sets
40 data technology
41 decisions
42 development
43 domain-specific regulations
44 eHealth
45 elicit users
46 environment
47 example case
48 framework
49 general standards
50 guidelines
51 immediate action
52 implementation
53 information
54 insights
55 interesting subject
56 large data sets
57 log
58 main objective
59 major objective
60 need
61 next immediate actions
62 objective
63 operation
64 organizational context
65 paper
66 performance
67 possible trends
68 problem
69 real-time data
70 regulation
71 requirements
72 requirements analysis
73 requirements analysis framework
74 requirements framework
75 right services
76 run-time service performance
77 service implementation
78 service logs
79 service performance
80 service requirements
81 service requirements analysis
82 service requirements analysis framework
83 service requirements framework
84 service use cases
85 service users' needs
86 services
87 set
88 standards
89 subjects
90 technological services implementations
91 technology
92 trends
93 use cases
94 useful guidelines
95 useful information
96 user needs
97 users
98 values
99 world
100 schema:name Big Data Services Requirements Analysis
101 schema:pagination 3-14
102 schema:productId N15892c226aae41b9b1eb370d810cef58
103 N99c3b1eca01848f08048109bfffda8ca
104 schema:publisher Nb3c340fe9c984e6d8a93cdc89a350c31
105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100167682
106 https://doi.org/10.1007/978-981-10-7796-8_1
107 schema:sdDatePublished 2022-01-01T19:16
108 schema:sdLicense https://scigraph.springernature.com/explorer/license/
109 schema:sdPublisher N36477cca39f346038b4caeffc941cda0
110 schema:url https://doi.org/10.1007/978-981-10-7796-8_1
111 sgo:license sg:explorer/license/
112 sgo:sdDataset chapters
113 rdf:type schema:Chapter
114 N0e80f470b890472cbce6fc1ba533572a schema:familyName Ikram
115 schema:givenName Naveed
116 rdf:type schema:Person
117 N14ec694c755248cbaa22196b53f885dd rdf:first Ndac7402c2bc146af97e66dafe752e33e
118 rdf:rest Nc320c51b43204b549d3b60f6acc9b927
119 N15892c226aae41b9b1eb370d810cef58 schema:name doi
120 schema:value 10.1007/978-981-10-7796-8_1
121 rdf:type schema:PropertyValue
122 N2295aea6d31d45a484b5ccc04c01b83d rdf:first sg:person.012303351315.43
123 rdf:rest Nb42a79c511d34ef09e073f90e93b962a
124 N36477cca39f346038b4caeffc941cda0 schema:name Springer Nature - SN SciGraph project
125 rdf:type schema:Organization
126 N4495d0b5cfad42a096c95bcad3f77617 rdf:first Nec223076678d499ab6eea0efdd13bcce
127 rdf:rest rdf:nil
128 N4b83808cb1b74f20ab04f09a07d03bc3 schema:familyName Kamalrudin
129 schema:givenName Massila
130 rdf:type schema:Person
131 N5ac96c4bda074ae586188003ab13c6f8 rdf:first sg:person.016344044245.48
132 rdf:rest Ndaa3e09dc24b4e3e87a5fc6ee0f3cedb
133 N99c3b1eca01848f08048109bfffda8ca schema:name dimensions_id
134 schema:value pub.1100167682
135 rdf:type schema:PropertyValue
136 Nb3c340fe9c984e6d8a93cdc89a350c31 schema:name Springer Nature
137 rdf:type schema:Organisation
138 Nb42a79c511d34ef09e073f90e93b962a rdf:first sg:person.016541066562.05
139 rdf:rest N4495d0b5cfad42a096c95bcad3f77617
140 Nb4b55dcccfdc45549638904439977c7b rdf:first sg:person.014130132243.72
141 rdf:rest N2295aea6d31d45a484b5ccc04c01b83d
142 Nc320c51b43204b549d3b60f6acc9b927 rdf:first N0e80f470b890472cbce6fc1ba533572a
143 rdf:rest rdf:nil
144 Ndaa3e09dc24b4e3e87a5fc6ee0f3cedb rdf:first sg:person.016135127503.96
145 rdf:rest Nb4b55dcccfdc45549638904439977c7b
146 Ndac7402c2bc146af97e66dafe752e33e schema:familyName Ahmad
147 schema:givenName Sabrina
148 rdf:type schema:Person
149 Ne1ea78ae66b84751b9ce0d2564286645 rdf:first N4b83808cb1b74f20ab04f09a07d03bc3
150 rdf:rest N14ec694c755248cbaa22196b53f885dd
151 Ne90529a3411440d2bdf85ef9333953f7 schema:isbn 978-981-10-7795-1
152 978-981-10-7796-8
153 schema:name Requirements Engineering for Internet of Things
154 rdf:type schema:Book
155 Nec223076678d499ab6eea0efdd13bcce schema:affiliation grid-institutes:None
156 schema:familyName Ling
157 schema:givenName Tan Sheau
158 rdf:type schema:Person
159 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
160 schema:name Information and Computing Sciences
161 rdf:type schema:DefinedTerm
162 anzsrc-for:0803 schema:inDefinedTermSet anzsrc-for:
163 schema:name Computer Software
164 rdf:type schema:DefinedTerm
165 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
166 schema:name Information Systems
167 rdf:type schema:DefinedTerm
168 sg:person.012303351315.43 schema:affiliation grid-institutes:grid.12527.33
169 schema:familyName Wang
170 schema:givenName Jianmin
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303351315.43
172 rdf:type schema:Person
173 sg:person.014130132243.72 schema:affiliation grid-institutes:grid.12527.33
174 schema:familyName Cao
175 schema:givenName Zhanqiang
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014130132243.72
177 rdf:type schema:Person
178 sg:person.016135127503.96 schema:affiliation grid-institutes:grid.12527.33
179 schema:familyName Liu
180 schema:givenName Lin
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016135127503.96
182 rdf:type schema:Person
183 sg:person.016344044245.48 schema:affiliation grid-institutes:grid.12527.33
184 schema:familyName Yasin
185 schema:givenName Affan
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016344044245.48
187 rdf:type schema:Person
188 sg:person.016541066562.05 schema:affiliation grid-institutes:grid.12527.33
189 schema:familyName Liu
190 schema:givenName Yingbo
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016541066562.05
192 rdf:type schema:Person
193 grid-institutes:None schema:alternateName Ecogeneration International PTE Ltd., Singapore, Singapore
194 schema:name Ecogeneration International PTE Ltd., Singapore, Singapore
195 School of Software, Tsinghua University, 100084, Beijing, China
196 rdf:type schema:Organization
197 grid-institutes:grid.12527.33 schema:alternateName School of Software, Tsinghua University, 100084, Beijing, China
198 schema:name School of Software, Tsinghua University, 100084, Beijing, China
199 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...