Shock Waves View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2019-08-15

AUTHORS

Stefano Trillo , Matteo Conforti

ABSTRACT

We discuss the physics of shock waves with special emphasis on the phenomena related to the field of nonlinear fiber optics. We first introduce the general mechanism commonly known as gradient catastrophe and the related concept of classical shock waves. Then we proceed to discuss the possible regularization mechanisms of the shock, and in particular the dispersive regularization, which is behind the formation of dispersive shock waves in fibers. We then discuss different possible scenarios that lead to observe the formation of dispersive shock waves in fibers, such as pulse propagation, four-wave mixing, and passive resonators, also showing that fibers allow for investigating the dispersive regime of classical problems related to the physics of shock such as the dam-break problem and the propagation of Riemann waves. We also discuss the phase-matching mechanism that induces the shock to efficiently radiate resonant radiation in the normal dispersion regime. Throughout the text we refer to the mathematical models and the approaches that are employed to describe such phenomena. More... »

PAGES

373-419

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-981-10-7087-7_16

DOI

http://dx.doi.org/10.1007/978-981-10-7087-7_16

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1120327771


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Engineering, University of Ferrara, Ferrara, Italy", 
          "id": "http://www.grid.ac/institutes/grid.8484.0", 
          "name": [
            "Department of Engineering, University of Ferrara, Ferrara, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Trillo", 
        "givenName": "Stefano", 
        "id": "sg:person.01242414260.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242414260.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CNRS, UMR 8523, PhLAM \u2013 Physique des Lasers Atomes et Mol\u00e9cules, University of Lille, Lille, France", 
          "id": "http://www.grid.ac/institutes/grid.503422.2", 
          "name": [
            "CNRS, UMR 8523, PhLAM \u2013 Physique des Lasers Atomes et Mol\u00e9cules, University of Lille, Lille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Conforti", 
        "givenName": "Matteo", 
        "id": "sg:person.0764653251.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764653251.31"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2019-08-15", 
    "datePublishedReg": "2019-08-15", 
    "description": "We discuss the physics of shock waves with special emphasis on the phenomena related to the field of nonlinear fiber optics. We first introduce the general mechanism commonly known as gradient catastrophe and the related concept of classical shock waves. Then we proceed to discuss the possible regularization mechanisms of the shock, and in particular the dispersive regularization, which is behind the formation of dispersive shock waves in fibers. We then discuss different possible scenarios that lead to observe the formation of dispersive shock waves in fibers, such as pulse propagation, four-wave mixing, and passive resonators, also showing that fibers allow for investigating the dispersive regime of classical problems related to the physics of shock such as the dam-break problem and the propagation of Riemann waves. We also discuss the phase-matching mechanism that induces the shock to efficiently radiate resonant radiation in the normal dispersion regime. Throughout the text we refer to the mathematical models and the approaches that are employed to describe such phenomena.", 
    "editor": [
      {
        "familyName": "Peng", 
        "givenName": "Gang-Ding", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-981-10-7087-7_16", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-981-10-7085-3", 
        "978-981-10-7087-7"
      ], 
      "name": "Handbook of Optical Fibers", 
      "type": "Book"
    }, 
    "keywords": [
      "dispersive shock waves", 
      "shock waves", 
      "phase-matching mechanism", 
      "physics of shocks", 
      "normal dispersion regime", 
      "nonlinear fiber optics", 
      "four-wave mixing", 
      "classical shock waves", 
      "dam-break problem", 
      "resonant radiation", 
      "dispersion regime", 
      "dispersive regime", 
      "gradient catastrophe", 
      "pulse propagation", 
      "Riemann waves", 
      "dispersive regularization", 
      "fiber optics", 
      "mathematical model", 
      "passive resonator", 
      "classical problem", 
      "regularization mechanism", 
      "physics", 
      "waves", 
      "different possible scenarios", 
      "optics", 
      "such phenomena", 
      "propagation", 
      "regime", 
      "possible scenarios", 
      "resonator", 
      "problem", 
      "radiation", 
      "regularization", 
      "fibers", 
      "phenomenon", 
      "special emphasis", 
      "mixing", 
      "field", 
      "shock", 
      "formation", 
      "related concepts", 
      "model", 
      "approach", 
      "mechanism", 
      "scenarios", 
      "general mechanism", 
      "catastrophe", 
      "concept", 
      "emphasis", 
      "text"
    ], 
    "name": "Shock Waves", 
    "pagination": "373-419", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1120327771"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-981-10-7087-7_16"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-981-10-7087-7_16", 
      "https://app.dimensions.ai/details/publication/pub.1120327771"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_130.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-981-10-7087-7_16"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-7087-7_16'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-7087-7_16'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-7087-7_16'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-7087-7_16'


 

This table displays all metadata directly associated to this object as RDF triples.

119 TRIPLES      22 PREDICATES      74 URIs      67 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-981-10-7087-7_16 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nc31ae6c7fda942539911a3000199673b
4 schema:datePublished 2019-08-15
5 schema:datePublishedReg 2019-08-15
6 schema:description We discuss the physics of shock waves with special emphasis on the phenomena related to the field of nonlinear fiber optics. We first introduce the general mechanism commonly known as gradient catastrophe and the related concept of classical shock waves. Then we proceed to discuss the possible regularization mechanisms of the shock, and in particular the dispersive regularization, which is behind the formation of dispersive shock waves in fibers. We then discuss different possible scenarios that lead to observe the formation of dispersive shock waves in fibers, such as pulse propagation, four-wave mixing, and passive resonators, also showing that fibers allow for investigating the dispersive regime of classical problems related to the physics of shock such as the dam-break problem and the propagation of Riemann waves. We also discuss the phase-matching mechanism that induces the shock to efficiently radiate resonant radiation in the normal dispersion regime. Throughout the text we refer to the mathematical models and the approaches that are employed to describe such phenomena.
7 schema:editor N0cf98f50117f45a894f7fde1cb7d790d
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N6163e33f4dc2410cbd69bd430bf47732
11 schema:keywords Riemann waves
12 approach
13 catastrophe
14 classical problem
15 classical shock waves
16 concept
17 dam-break problem
18 different possible scenarios
19 dispersion regime
20 dispersive regime
21 dispersive regularization
22 dispersive shock waves
23 emphasis
24 fiber optics
25 fibers
26 field
27 formation
28 four-wave mixing
29 general mechanism
30 gradient catastrophe
31 mathematical model
32 mechanism
33 mixing
34 model
35 nonlinear fiber optics
36 normal dispersion regime
37 optics
38 passive resonator
39 phase-matching mechanism
40 phenomenon
41 physics
42 physics of shocks
43 possible scenarios
44 problem
45 propagation
46 pulse propagation
47 radiation
48 regime
49 regularization
50 regularization mechanism
51 related concepts
52 resonant radiation
53 resonator
54 scenarios
55 shock
56 shock waves
57 special emphasis
58 such phenomena
59 text
60 waves
61 schema:name Shock Waves
62 schema:pagination 373-419
63 schema:productId N10559b0f5a194f16bddadccef1efa856
64 Ne0e686a4063b4d81b57257dfc2f4a2da
65 schema:publisher N5a149b663df84e069f0a69c808565e08
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120327771
67 https://doi.org/10.1007/978-981-10-7087-7_16
68 schema:sdDatePublished 2022-12-01T06:46
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N3f2d4bb015ab4998a6ed39432b7b3a1c
71 schema:url https://doi.org/10.1007/978-981-10-7087-7_16
72 sgo:license sg:explorer/license/
73 sgo:sdDataset chapters
74 rdf:type schema:Chapter
75 N0cf98f50117f45a894f7fde1cb7d790d rdf:first Nec902f5872da4810b7ba531db4e60c4b
76 rdf:rest rdf:nil
77 N10559b0f5a194f16bddadccef1efa856 schema:name doi
78 schema:value 10.1007/978-981-10-7087-7_16
79 rdf:type schema:PropertyValue
80 N3f2d4bb015ab4998a6ed39432b7b3a1c schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 N5a149b663df84e069f0a69c808565e08 schema:name Springer Nature
83 rdf:type schema:Organisation
84 N5d244c60a2b74da19504d8a8d28e79ef rdf:first sg:person.0764653251.31
85 rdf:rest rdf:nil
86 N6163e33f4dc2410cbd69bd430bf47732 schema:isbn 978-981-10-7085-3
87 978-981-10-7087-7
88 schema:name Handbook of Optical Fibers
89 rdf:type schema:Book
90 Nc31ae6c7fda942539911a3000199673b rdf:first sg:person.01242414260.33
91 rdf:rest N5d244c60a2b74da19504d8a8d28e79ef
92 Ne0e686a4063b4d81b57257dfc2f4a2da schema:name dimensions_id
93 schema:value pub.1120327771
94 rdf:type schema:PropertyValue
95 Nec902f5872da4810b7ba531db4e60c4b schema:familyName Peng
96 schema:givenName Gang-Ding
97 rdf:type schema:Person
98 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
99 schema:name Physical Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
102 schema:name Other Physical Sciences
103 rdf:type schema:DefinedTerm
104 sg:person.01242414260.33 schema:affiliation grid-institutes:grid.8484.0
105 schema:familyName Trillo
106 schema:givenName Stefano
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242414260.33
108 rdf:type schema:Person
109 sg:person.0764653251.31 schema:affiliation grid-institutes:grid.503422.2
110 schema:familyName Conforti
111 schema:givenName Matteo
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764653251.31
113 rdf:type schema:Person
114 grid-institutes:grid.503422.2 schema:alternateName CNRS, UMR 8523, PhLAM – Physique des Lasers Atomes et Molécules, University of Lille, Lille, France
115 schema:name CNRS, UMR 8523, PhLAM – Physique des Lasers Atomes et Molécules, University of Lille, Lille, France
116 rdf:type schema:Organization
117 grid-institutes:grid.8484.0 schema:alternateName Department of Engineering, University of Ferrara, Ferrara, Italy
118 schema:name Department of Engineering, University of Ferrara, Ferrara, Italy
119 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...