A Novel Progressive Secret Image Sharing Method with Better Robustness View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017-09-16

AUTHORS

Lintao Liu , Yuliang Lu , Xuehu Yan , Wanmeng Ding

ABSTRACT

Secret image sharing (SIS) can be utilized to protect a secret image during transmit in the public channels. However, classic SIS schemes, e.g., visual secret sharing (VSS) and polynomial-based scheme, are not suitable for progressive encryption of greyscale images in noisy environment, since they will result in different problems, such as lossy recovery, pixel expansion, complex computation, “All-or-Nothing” and robustness. In this paper, a novel progressive secret sharing (PSS) method based on the linear congruence equation, namely LCPSS, is proposed to solve these problems. LCPSS is simple designed and easy to realize, but naturally has many great properties, e.g., (k, n) threshold, progressive recovery, lossless recovery, lack of robustness and simple computation. Experimental results are given to demonstrate the validity of LCPSS. More... »

PAGES

539-550

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-981-10-6388-6_46

DOI

http://dx.doi.org/10.1007/978-981-10-6388-6_46

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091806477


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hefei Electronic Engineering Institute, 230037, Hefei, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Hefei Electronic Engineering Institute, 230037, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Lintao", 
        "id": "sg:person.013517427271.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013517427271.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei Electronic Engineering Institute, 230037, Hefei, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Hefei Electronic Engineering Institute, 230037, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Yuliang", 
        "id": "sg:person.015112370271.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015112370271.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei Electronic Engineering Institute, 230037, Hefei, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Hefei Electronic Engineering Institute, 230037, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Xuehu", 
        "id": "sg:person.010467364517.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467364517.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei Electronic Engineering Institute, 230037, Hefei, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Hefei Electronic Engineering Institute, 230037, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ding", 
        "givenName": "Wanmeng", 
        "id": "sg:person.010577640471.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010577640471.37"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-09-16", 
    "datePublishedReg": "2017-09-16", 
    "description": "Secret image sharing (SIS) can be utilized to protect a secret image during transmit in the public channels. However, classic SIS schemes, e.g., visual secret sharing (VSS) and polynomial-based scheme, are not suitable for progressive encryption of greyscale images in noisy environment, since they will result in different problems, such as lossy recovery, pixel expansion, complex computation, \u201cAll-or-Nothing\u201d and robustness. In this paper, a novel progressive secret sharing (PSS) method based on the linear congruence equation, namely LCPSS, is proposed to solve these problems. LCPSS is simple designed and easy to realize, but naturally has many great properties, e.g., (k,\u00a0n) threshold, progressive recovery, lossless recovery, lack of robustness and simple computation. Experimental results are given to demonstrate the validity of LCPSS.", 
    "editor": [
      {
        "familyName": "Zou", 
        "givenName": "Beiji", 
        "type": "Person"
      }, 
      {
        "familyName": "Han", 
        "givenName": "Qilong", 
        "type": "Person"
      }, 
      {
        "familyName": "Sun", 
        "givenName": "Guanglu", 
        "type": "Person"
      }, 
      {
        "familyName": "Jing", 
        "givenName": "Weipeng", 
        "type": "Person"
      }, 
      {
        "familyName": "Peng", 
        "givenName": "Xiaoning", 
        "type": "Person"
      }, 
      {
        "familyName": "Lu", 
        "givenName": "Zeguang", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-981-10-6388-6_46", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-981-10-6387-9", 
        "978-981-10-6388-6"
      ], 
      "name": "Data Science", 
      "type": "Book"
    }, 
    "keywords": [
      "visual secret sharing", 
      "secret image sharing", 
      "secret image sharing method", 
      "sharing method", 
      "secret sharing method", 
      "image sharing method", 
      "polynomial-based scheme", 
      "progressive encryption", 
      "lossy recovery", 
      "secret image", 
      "image sharing", 
      "pixel expansion", 
      "SIS schemes", 
      "lossless recovery", 
      "secret sharing", 
      "linear congruence equations", 
      "public channel", 
      "complex computations", 
      "greyscale images", 
      "lack of robustness", 
      "good robustness", 
      "noisy environments", 
      "simple computation", 
      "different problems", 
      "experimental results", 
      "sharing", 
      "robustness", 
      "computation", 
      "congruence equations", 
      "images", 
      "encryption", 
      "scheme", 
      "transmit", 
      "environment", 
      "method", 
      "channels", 
      "results", 
      "threshold", 
      "lack", 
      "validity", 
      "progressive recovery", 
      "recovery", 
      "great properties", 
      "expansion", 
      "properties", 
      "equations", 
      "problem", 
      "paper"
    ], 
    "name": "A Novel Progressive Secret Image Sharing Method with Better Robustness", 
    "pagination": "539-550", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091806477"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-981-10-6388-6_46"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-981-10-6388-6_46", 
      "https://app.dimensions.ai/details/publication/pub.1091806477"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_44.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-981-10-6388-6_46"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-6388-6_46'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-6388-6_46'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-6388-6_46'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-6388-6_46'


 

This table displays all metadata directly associated to this object as RDF triples.

153 TRIPLES      22 PREDICATES      72 URIs      65 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-981-10-6388-6_46 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N9cee8e20ba4442dfa82a8db5cf915498
4 schema:datePublished 2017-09-16
5 schema:datePublishedReg 2017-09-16
6 schema:description Secret image sharing (SIS) can be utilized to protect a secret image during transmit in the public channels. However, classic SIS schemes, e.g., visual secret sharing (VSS) and polynomial-based scheme, are not suitable for progressive encryption of greyscale images in noisy environment, since they will result in different problems, such as lossy recovery, pixel expansion, complex computation, “All-or-Nothing” and robustness. In this paper, a novel progressive secret sharing (PSS) method based on the linear congruence equation, namely LCPSS, is proposed to solve these problems. LCPSS is simple designed and easy to realize, but naturally has many great properties, e.g., (k, n) threshold, progressive recovery, lossless recovery, lack of robustness and simple computation. Experimental results are given to demonstrate the validity of LCPSS.
7 schema:editor Nbe5beefebbef4a1cbe72bc11f2155434
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Nef60c35918ff4e5fb543637333bdc131
11 schema:keywords SIS schemes
12 channels
13 complex computations
14 computation
15 congruence equations
16 different problems
17 encryption
18 environment
19 equations
20 expansion
21 experimental results
22 good robustness
23 great properties
24 greyscale images
25 image sharing
26 image sharing method
27 images
28 lack
29 lack of robustness
30 linear congruence equations
31 lossless recovery
32 lossy recovery
33 method
34 noisy environments
35 paper
36 pixel expansion
37 polynomial-based scheme
38 problem
39 progressive encryption
40 progressive recovery
41 properties
42 public channel
43 recovery
44 results
45 robustness
46 scheme
47 secret image
48 secret image sharing
49 secret image sharing method
50 secret sharing
51 secret sharing method
52 sharing
53 sharing method
54 simple computation
55 threshold
56 transmit
57 validity
58 visual secret sharing
59 schema:name A Novel Progressive Secret Image Sharing Method with Better Robustness
60 schema:pagination 539-550
61 schema:productId N21adcf03057748259d96e82a54ac6d4f
62 Nb98c40c521be49939b935e159807fd90
63 schema:publisher N6e586020ddce412eb1807ab2cb478e3e
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091806477
65 https://doi.org/10.1007/978-981-10-6388-6_46
66 schema:sdDatePublished 2022-12-01T06:54
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher Ne4f6c203bd614250a14213f0dc66bea7
69 schema:url https://doi.org/10.1007/978-981-10-6388-6_46
70 sgo:license sg:explorer/license/
71 sgo:sdDataset chapters
72 rdf:type schema:Chapter
73 N0f14738e96924812a9b62f327b067471 rdf:first sg:person.010467364517.31
74 rdf:rest Nfe23d7692be84ecfaded17ed8305873d
75 N15ef2fb690f243a4ad0fbec34e6640bd schema:familyName Sun
76 schema:givenName Guanglu
77 rdf:type schema:Person
78 N21adcf03057748259d96e82a54ac6d4f schema:name doi
79 schema:value 10.1007/978-981-10-6388-6_46
80 rdf:type schema:PropertyValue
81 N25a308c8a79b421c862d6b791c5a0c0f schema:familyName Han
82 schema:givenName Qilong
83 rdf:type schema:Person
84 N3bc7c7ef664a44e88e2ada7ac25d3c37 rdf:first N25a308c8a79b421c862d6b791c5a0c0f
85 rdf:rest Nf1786033a6c044f099644789b85e7ac3
86 N44e1d77433c84505acf9c80db1a5e74e rdf:first sg:person.015112370271.93
87 rdf:rest N0f14738e96924812a9b62f327b067471
88 N6a3d26f575d74a28b99fc86ce43b6231 schema:familyName Zou
89 schema:givenName Beiji
90 rdf:type schema:Person
91 N6a820ad6e9174c149781737f23be3b50 rdf:first Nb9f6af2870914bccbd61c640e30e5f81
92 rdf:rest N9110a875ad8a45c4b0efec4e1502e4b5
93 N6e586020ddce412eb1807ab2cb478e3e schema:name Springer Nature
94 rdf:type schema:Organisation
95 N9110a875ad8a45c4b0efec4e1502e4b5 rdf:first N9b19b77a1b91422baf9c4dc315b167a3
96 rdf:rest rdf:nil
97 N9b19b77a1b91422baf9c4dc315b167a3 schema:familyName Lu
98 schema:givenName Zeguang
99 rdf:type schema:Person
100 N9cee8e20ba4442dfa82a8db5cf915498 rdf:first sg:person.013517427271.32
101 rdf:rest N44e1d77433c84505acf9c80db1a5e74e
102 Nb98c40c521be49939b935e159807fd90 schema:name dimensions_id
103 schema:value pub.1091806477
104 rdf:type schema:PropertyValue
105 Nb9f6af2870914bccbd61c640e30e5f81 schema:familyName Peng
106 schema:givenName Xiaoning
107 rdf:type schema:Person
108 Nbe5beefebbef4a1cbe72bc11f2155434 rdf:first N6a3d26f575d74a28b99fc86ce43b6231
109 rdf:rest N3bc7c7ef664a44e88e2ada7ac25d3c37
110 Ne4f6c203bd614250a14213f0dc66bea7 schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 Nef60c35918ff4e5fb543637333bdc131 schema:isbn 978-981-10-6387-9
113 978-981-10-6388-6
114 schema:name Data Science
115 rdf:type schema:Book
116 Nf1786033a6c044f099644789b85e7ac3 rdf:first N15ef2fb690f243a4ad0fbec34e6640bd
117 rdf:rest Nf94ded47d9b147f6a5be7d78323f3706
118 Nf22f50cd44924501b4efd966052a63aa schema:familyName Jing
119 schema:givenName Weipeng
120 rdf:type schema:Person
121 Nf94ded47d9b147f6a5be7d78323f3706 rdf:first Nf22f50cd44924501b4efd966052a63aa
122 rdf:rest N6a820ad6e9174c149781737f23be3b50
123 Nfe23d7692be84ecfaded17ed8305873d rdf:first sg:person.010577640471.37
124 rdf:rest rdf:nil
125 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
126 schema:name Information and Computing Sciences
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
129 schema:name Artificial Intelligence and Image Processing
130 rdf:type schema:DefinedTerm
131 sg:person.010467364517.31 schema:affiliation grid-institutes:None
132 schema:familyName Yan
133 schema:givenName Xuehu
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467364517.31
135 rdf:type schema:Person
136 sg:person.010577640471.37 schema:affiliation grid-institutes:None
137 schema:familyName Ding
138 schema:givenName Wanmeng
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010577640471.37
140 rdf:type schema:Person
141 sg:person.013517427271.32 schema:affiliation grid-institutes:None
142 schema:familyName Liu
143 schema:givenName Lintao
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013517427271.32
145 rdf:type schema:Person
146 sg:person.015112370271.93 schema:affiliation grid-institutes:None
147 schema:familyName Lu
148 schema:givenName Yuliang
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015112370271.93
150 rdf:type schema:Person
151 grid-institutes:None schema:alternateName Hefei Electronic Engineering Institute, 230037, Hefei, China
152 schema:name Hefei Electronic Engineering Institute, 230037, Hefei, China
153 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...