Recognition of Natural Road Sign Based on the Improved Curvature Feature View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017

AUTHORS

Yanqing Wang , Hao Zheng , Weiwei Chen

ABSTRACT

To solve the recognition of road sign with an intelligent vehicle in vision-based navigation, road sign extraction and matching techniques required in outdoor scene was proposed in this paper. The method of the improved curvature based on feature extraction and binary description took the advantage of reasonable features distribution to overcome the problems of traditional features uneven distribution. Binary description method was represented to solve the real-time problem of feature matching. Through the validity and real-time performance of different algorithms are compared by experiments and indicate that the method can not only overcome negative influences from the disturb of non-targets, while spending on average only 46 ms processing each frame, but also meet the requirements of robustness, real-time, and accuracy. More... »

PAGES

689-695

References to SciGraph publications

Book

TITLE

Data Science

ISBN

978-981-10-6384-8
978-981-10-6385-5

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-981-10-6385-5_57

DOI

http://dx.doi.org/10.1007/978-981-10-6385-5_57

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091806426


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nanjing Xiaozhuang University", 
          "id": "https://www.grid.ac/institutes/grid.440845.9", 
          "name": [
            "Nanjing Xiaozhuang University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yanqing", 
        "id": "sg:person.014527244613.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014527244613.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Xiaozhuang University", 
          "id": "https://www.grid.ac/institutes/grid.440845.9", 
          "name": [
            "Nanjing Xiaozhuang University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Hao", 
        "id": "sg:person.07575706553.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07575706553.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Xiaozhuang University", 
          "id": "https://www.grid.ac/institutes/grid.440845.9", 
          "name": [
            "Nanjing Xiaozhuang University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Weiwei", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.4028/www.scientific.net/amr.1046.425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023409941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3923/itj.2010.481.487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029708993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-981-10-2053-7_52", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047518163", 
          "https://doi.org/10.1007/978-981-10-2053-7_52"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2013.407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093248751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2013.407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093248751"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017", 
    "datePublishedReg": "2017-01-01", 
    "description": "To solve the recognition of road sign with an intelligent vehicle in vision-based navigation, road sign extraction and matching techniques required in outdoor scene was proposed in this paper. The method of the improved curvature based on feature extraction and binary description took the advantage of reasonable features distribution to overcome the problems of traditional features uneven distribution. Binary description method was represented to solve the real-time problem of feature matching. Through the validity and real-time performance of different algorithms are compared by experiments and indicate that the method can not only overcome negative influences from the disturb of non-targets, while spending on average only 46 ms processing each frame, but also meet the requirements of robustness, real-time, and accuracy.", 
    "editor": [
      {
        "familyName": "Zou", 
        "givenName": "Beiji", 
        "type": "Person"
      }, 
      {
        "familyName": "Li", 
        "givenName": "Min", 
        "type": "Person"
      }, 
      {
        "familyName": "Wang", 
        "givenName": "Hongzhi", 
        "type": "Person"
      }, 
      {
        "familyName": "Song", 
        "givenName": "Xianhua", 
        "type": "Person"
      }, 
      {
        "familyName": "Xie", 
        "givenName": "Wei", 
        "type": "Person"
      }, 
      {
        "familyName": "Lu", 
        "givenName": "Zeguang", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-981-10-6385-5_57", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-981-10-6384-8", 
        "978-981-10-6385-5"
      ], 
      "name": "Data Science", 
      "type": "Book"
    }, 
    "name": "Recognition of Natural Road Sign Based on the Improved Curvature Feature", 
    "pagination": "689-695", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-981-10-6385-5_57"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d51ed66b11ac25494a2159b854d22ff99a5aa9d6fd5729ada1aa7d571c897ef0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091806426"
        ]
      }
    ], 
    "publisher": {
      "location": "Singapore", 
      "name": "Springer Singapore", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-981-10-6385-5_57", 
      "https://app.dimensions.ai/details/publication/pub.1091806426"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T21:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000601.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-981-10-6385-5_57"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-6385-5_57'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-6385-5_57'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-6385-5_57'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-6385-5_57'


 

This table displays all metadata directly associated to this object as RDF triples.

116 TRIPLES      23 PREDICATES      31 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-981-10-6385-5_57 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N0386eef40ae042a7b22ae2f2828544be
4 schema:citation sg:pub.10.1007/978-981-10-2053-7_52
5 https://doi.org/10.1109/cvpr.2013.407
6 https://doi.org/10.3923/itj.2010.481.487
7 https://doi.org/10.4028/www.scientific.net/amr.1046.425
8 schema:datePublished 2017
9 schema:datePublishedReg 2017-01-01
10 schema:description To solve the recognition of road sign with an intelligent vehicle in vision-based navigation, road sign extraction and matching techniques required in outdoor scene was proposed in this paper. The method of the improved curvature based on feature extraction and binary description took the advantage of reasonable features distribution to overcome the problems of traditional features uneven distribution. Binary description method was represented to solve the real-time problem of feature matching. Through the validity and real-time performance of different algorithms are compared by experiments and indicate that the method can not only overcome negative influences from the disturb of non-targets, while spending on average only 46 ms processing each frame, but also meet the requirements of robustness, real-time, and accuracy.
11 schema:editor N9e820e903a86438faa674f53eb9d8e03
12 schema:genre chapter
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N1decebb4f9db401a8489519dba3ed8e8
16 schema:name Recognition of Natural Road Sign Based on the Improved Curvature Feature
17 schema:pagination 689-695
18 schema:productId N144a016f0c944eb1885c8edce7157982
19 N5002199a3db74f32838883c6ebab72bb
20 Na750a5e2bd2a4706ab135e8097a7b34d
21 schema:publisher N822aeffc55b24d4b99ace84bb6de7981
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091806426
23 https://doi.org/10.1007/978-981-10-6385-5_57
24 schema:sdDatePublished 2019-04-15T21:41
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher Nfb95e2aa58394baab8295bb9fb283225
27 schema:url http://link.springer.com/10.1007/978-981-10-6385-5_57
28 sgo:license sg:explorer/license/
29 sgo:sdDataset chapters
30 rdf:type schema:Chapter
31 N0122baff8f9d4621b1dea87e17f5115a rdf:first N352dea2cc3304eb3b8a5d8a871cf714c
32 rdf:rest rdf:nil
33 N0386eef40ae042a7b22ae2f2828544be rdf:first sg:person.014527244613.52
34 rdf:rest Nd0c63d2a50604f2face9816f74bc32df
35 N0e5f989b9b8e42e2af8a2078f0991c5f schema:familyName Xie
36 schema:givenName Wei
37 rdf:type schema:Person
38 N1187f8b915ec4f5d92923cb2ee059453 rdf:first N58ef52d09c1342ea9838d813fd885240
39 rdf:rest rdf:nil
40 N144a016f0c944eb1885c8edce7157982 schema:name dimensions_id
41 schema:value pub.1091806426
42 rdf:type schema:PropertyValue
43 N1decebb4f9db401a8489519dba3ed8e8 schema:isbn 978-981-10-6384-8
44 978-981-10-6385-5
45 schema:name Data Science
46 rdf:type schema:Book
47 N352dea2cc3304eb3b8a5d8a871cf714c schema:familyName Lu
48 schema:givenName Zeguang
49 rdf:type schema:Person
50 N5002199a3db74f32838883c6ebab72bb schema:name readcube_id
51 schema:value d51ed66b11ac25494a2159b854d22ff99a5aa9d6fd5729ada1aa7d571c897ef0
52 rdf:type schema:PropertyValue
53 N58ef52d09c1342ea9838d813fd885240 schema:affiliation https://www.grid.ac/institutes/grid.440845.9
54 schema:familyName Chen
55 schema:givenName Weiwei
56 rdf:type schema:Person
57 N5e80e01fd5f84a2cb86cb529280ece43 rdf:first Nfa251e4fb3e2460481db549645b71c4b
58 rdf:rest N9fab826a452b4446aaf339cc0daa72bc
59 N822aeffc55b24d4b99ace84bb6de7981 schema:location Singapore
60 schema:name Springer Singapore
61 rdf:type schema:Organisation
62 N9e820e903a86438faa674f53eb9d8e03 rdf:first Nd11f5c5467ba487c8182034e5f4970de
63 rdf:rest Ne363535f1fba492d8ca24713b6e200c7
64 N9fab826a452b4446aaf339cc0daa72bc rdf:first Nec97dbd900874ab385d7d597d8025f2a
65 rdf:rest Nea917a53b5e84547905e7f21ed3a60cc
66 Na750a5e2bd2a4706ab135e8097a7b34d schema:name doi
67 schema:value 10.1007/978-981-10-6385-5_57
68 rdf:type schema:PropertyValue
69 Nbc583b8e265e4dec928a57a1675bca8f schema:familyName Li
70 schema:givenName Min
71 rdf:type schema:Person
72 Nd0c63d2a50604f2face9816f74bc32df rdf:first sg:person.07575706553.15
73 rdf:rest N1187f8b915ec4f5d92923cb2ee059453
74 Nd11f5c5467ba487c8182034e5f4970de schema:familyName Zou
75 schema:givenName Beiji
76 rdf:type schema:Person
77 Ne363535f1fba492d8ca24713b6e200c7 rdf:first Nbc583b8e265e4dec928a57a1675bca8f
78 rdf:rest N5e80e01fd5f84a2cb86cb529280ece43
79 Nea917a53b5e84547905e7f21ed3a60cc rdf:first N0e5f989b9b8e42e2af8a2078f0991c5f
80 rdf:rest N0122baff8f9d4621b1dea87e17f5115a
81 Nec97dbd900874ab385d7d597d8025f2a schema:familyName Song
82 schema:givenName Xianhua
83 rdf:type schema:Person
84 Nfa251e4fb3e2460481db549645b71c4b schema:familyName Wang
85 schema:givenName Hongzhi
86 rdf:type schema:Person
87 Nfb95e2aa58394baab8295bb9fb283225 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
90 schema:name Information and Computing Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
93 schema:name Artificial Intelligence and Image Processing
94 rdf:type schema:DefinedTerm
95 sg:person.014527244613.52 schema:affiliation https://www.grid.ac/institutes/grid.440845.9
96 schema:familyName Wang
97 schema:givenName Yanqing
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014527244613.52
99 rdf:type schema:Person
100 sg:person.07575706553.15 schema:affiliation https://www.grid.ac/institutes/grid.440845.9
101 schema:familyName Zheng
102 schema:givenName Hao
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07575706553.15
104 rdf:type schema:Person
105 sg:pub.10.1007/978-981-10-2053-7_52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047518163
106 https://doi.org/10.1007/978-981-10-2053-7_52
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1109/cvpr.2013.407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093248751
109 rdf:type schema:CreativeWork
110 https://doi.org/10.3923/itj.2010.481.487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029708993
111 rdf:type schema:CreativeWork
112 https://doi.org/10.4028/www.scientific.net/amr.1046.425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023409941
113 rdf:type schema:CreativeWork
114 https://www.grid.ac/institutes/grid.440845.9 schema:alternateName Nanjing Xiaozhuang University
115 schema:name Nanjing Xiaozhuang University
116 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...