A General (k, n) Threshold Secret Image Sharing Construction Based on Matrix Theory View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017-09-16

AUTHORS

Wanmeng Ding , Kesheng Liu , Xuehu Yan , Lintao Liu

ABSTRACT

Shamir proposed a classic polynomial-based secret sharing (SS) scheme, which is also widely applied in secret image sharing (SIS). However, the following researchers paid more attention to the development of properties, such as lossless recovery, rather than the principle of Shamir’s polynomial-based SS scheme. In this paper, we introduce matrix theory to analyze Shamir’s polynomial-based scheme as well as propose a general (k, n) threshold SIS construction based on matrix theory. Besides, it is proved that Shamir’s polynomial-based SS scheme is a special case of our construction method. Both experimental results and analyses are given to demonstrate the effectiveness of the proposed construction method. More... »

PAGES

331-340

Book

TITLE

Data Science

ISBN

978-981-10-6384-8
978-981-10-6385-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-981-10-6385-5_28

DOI

http://dx.doi.org/10.1007/978-981-10-6385-5_28

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091806394


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hefei Electronic Engineering Institute, 230037, Hefei, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Hefei Electronic Engineering Institute, 230037, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ding", 
        "givenName": "Wanmeng", 
        "id": "sg:person.010577640471.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010577640471.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei Electronic Engineering Institute, 230037, Hefei, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Hefei Electronic Engineering Institute, 230037, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Kesheng", 
        "id": "sg:person.010553170175.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010553170175.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei Electronic Engineering Institute, 230037, Hefei, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Hefei Electronic Engineering Institute, 230037, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Xuehu", 
        "id": "sg:person.010467364517.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467364517.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei Electronic Engineering Institute, 230037, Hefei, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Hefei Electronic Engineering Institute, 230037, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Lintao", 
        "id": "sg:person.013517427271.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013517427271.32"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-09-16", 
    "datePublishedReg": "2017-09-16", 
    "description": "Shamir proposed a classic polynomial-based secret sharing (SS) scheme, which is also widely applied in secret image sharing (SIS). However, the following researchers paid more attention to the development of properties, such as lossless recovery, rather than the principle of Shamir\u2019s polynomial-based SS scheme. In this paper, we introduce matrix theory to analyze Shamir\u2019s polynomial-based scheme as well as propose a general (k,\u00a0n) threshold SIS construction based on matrix theory. Besides, it is proved that Shamir\u2019s polynomial-based SS scheme is a special case of our construction method. Both experimental results and analyses are given to demonstrate the effectiveness of the proposed construction method.", 
    "editor": [
      {
        "familyName": "Zou", 
        "givenName": "Beiji", 
        "type": "Person"
      }, 
      {
        "familyName": "Li", 
        "givenName": "Min", 
        "type": "Person"
      }, 
      {
        "familyName": "Wang", 
        "givenName": "Hongzhi", 
        "type": "Person"
      }, 
      {
        "familyName": "Song", 
        "givenName": "Xianhua", 
        "type": "Person"
      }, 
      {
        "familyName": "Xie", 
        "givenName": "Wei", 
        "type": "Person"
      }, 
      {
        "familyName": "Lu", 
        "givenName": "Zeguang", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-981-10-6385-5_28", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-981-10-6384-8", 
        "978-981-10-6385-5"
      ], 
      "name": "Data Science", 
      "type": "Book"
    }, 
    "keywords": [
      "matrix theory", 
      "polynomial-based scheme", 
      "SS scheme", 
      "special case", 
      "scheme", 
      "theory", 
      "secret sharing scheme", 
      "construction method", 
      "sharing scheme", 
      "experimental results", 
      "construction", 
      "Shamir", 
      "principles", 
      "properties", 
      "effectiveness", 
      "development of properties", 
      "cases", 
      "lossless recovery", 
      "results", 
      "propose", 
      "analysis", 
      "researchers", 
      "more attention", 
      "attention", 
      "sharing", 
      "development", 
      "secret image sharing", 
      "recovery", 
      "image sharing", 
      "method", 
      "paper"
    ], 
    "name": "A General (k, n) Threshold Secret Image Sharing Construction Based on Matrix Theory", 
    "pagination": "331-340", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091806394"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-981-10-6385-5_28"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-981-10-6385-5_28", 
      "https://app.dimensions.ai/details/publication/pub.1091806394"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_283.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-981-10-6385-5_28"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-6385-5_28'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-6385-5_28'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-6385-5_28'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-6385-5_28'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      22 PREDICATES      55 URIs      48 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-981-10-6385-5_28 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nd1326f226eac48969a3ebd9dfbe3b6e3
4 schema:datePublished 2017-09-16
5 schema:datePublishedReg 2017-09-16
6 schema:description Shamir proposed a classic polynomial-based secret sharing (SS) scheme, which is also widely applied in secret image sharing (SIS). However, the following researchers paid more attention to the development of properties, such as lossless recovery, rather than the principle of Shamir’s polynomial-based SS scheme. In this paper, we introduce matrix theory to analyze Shamir’s polynomial-based scheme as well as propose a general (k, n) threshold SIS construction based on matrix theory. Besides, it is proved that Shamir’s polynomial-based SS scheme is a special case of our construction method. Both experimental results and analyses are given to demonstrate the effectiveness of the proposed construction method.
7 schema:editor Nd7c22d4b4cc14626bbc9b36441fb6f37
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N0b611884999e4beb8ebe6225a990f99c
11 schema:keywords SS scheme
12 Shamir
13 analysis
14 attention
15 cases
16 construction
17 construction method
18 development
19 development of properties
20 effectiveness
21 experimental results
22 image sharing
23 lossless recovery
24 matrix theory
25 method
26 more attention
27 paper
28 polynomial-based scheme
29 principles
30 properties
31 propose
32 recovery
33 researchers
34 results
35 scheme
36 secret image sharing
37 secret sharing scheme
38 sharing
39 sharing scheme
40 special case
41 theory
42 schema:name A General (k, n) Threshold Secret Image Sharing Construction Based on Matrix Theory
43 schema:pagination 331-340
44 schema:productId Na872b12db210410f9348a3704a499a19
45 Nadd94d2092a242f98bc55b156dab1ac3
46 schema:publisher N90a7cc32dd57417c9447d5b11a731669
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091806394
48 https://doi.org/10.1007/978-981-10-6385-5_28
49 schema:sdDatePublished 2022-12-01T06:50
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N7927854eea0f4a71b8ded7341108ea02
52 schema:url https://doi.org/10.1007/978-981-10-6385-5_28
53 sgo:license sg:explorer/license/
54 sgo:sdDataset chapters
55 rdf:type schema:Chapter
56 N0b28c0b63e8042b1a23b94175470dfb7 rdf:first N1f71d76e0a684b18ac45ddf674c1647b
57 rdf:rest rdf:nil
58 N0b611884999e4beb8ebe6225a990f99c schema:isbn 978-981-10-6384-8
59 978-981-10-6385-5
60 schema:name Data Science
61 rdf:type schema:Book
62 N10e9e4b6b94349a4b9a5278cad08e54a rdf:first N18eb415c2a2e4eb5a29ed166f36067b3
63 rdf:rest N0b28c0b63e8042b1a23b94175470dfb7
64 N110d19928b154c67a621cc135843ea86 rdf:first sg:person.013517427271.32
65 rdf:rest rdf:nil
66 N170bdb270d8c43ad9d3d9b8e89d6f877 rdf:first N1f0978d00d8647d98e844a2c79d59d51
67 rdf:rest Ne3c7ded482544e6a85d6d022226f3cb0
68 N18eb415c2a2e4eb5a29ed166f36067b3 schema:familyName Xie
69 schema:givenName Wei
70 rdf:type schema:Person
71 N1f0978d00d8647d98e844a2c79d59d51 schema:familyName Wang
72 schema:givenName Hongzhi
73 rdf:type schema:Person
74 N1f71d76e0a684b18ac45ddf674c1647b schema:familyName Lu
75 schema:givenName Zeguang
76 rdf:type schema:Person
77 N4d22ccfc8f8447daaaa7afdddef100d0 schema:familyName Zou
78 schema:givenName Beiji
79 rdf:type schema:Person
80 N590b3bd904064efd8d014043635e32df schema:familyName Li
81 schema:givenName Min
82 rdf:type schema:Person
83 N653c27825a5747c8a9055f51a50e1ce6 rdf:first sg:person.010553170175.34
84 rdf:rest N8eac21ab80c34490b266af271fa562dc
85 N7927854eea0f4a71b8ded7341108ea02 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 N8eac21ab80c34490b266af271fa562dc rdf:first sg:person.010467364517.31
88 rdf:rest N110d19928b154c67a621cc135843ea86
89 N90a7cc32dd57417c9447d5b11a731669 schema:name Springer Nature
90 rdf:type schema:Organisation
91 N9bde7ae548454dcd80cc216cfc51ee3b schema:familyName Song
92 schema:givenName Xianhua
93 rdf:type schema:Person
94 Na872b12db210410f9348a3704a499a19 schema:name doi
95 schema:value 10.1007/978-981-10-6385-5_28
96 rdf:type schema:PropertyValue
97 Nadd94d2092a242f98bc55b156dab1ac3 schema:name dimensions_id
98 schema:value pub.1091806394
99 rdf:type schema:PropertyValue
100 Nd1326f226eac48969a3ebd9dfbe3b6e3 rdf:first sg:person.010577640471.37
101 rdf:rest N653c27825a5747c8a9055f51a50e1ce6
102 Nd7ac44b52a6f4b568736b071067e2d3e rdf:first N590b3bd904064efd8d014043635e32df
103 rdf:rest N170bdb270d8c43ad9d3d9b8e89d6f877
104 Nd7c22d4b4cc14626bbc9b36441fb6f37 rdf:first N4d22ccfc8f8447daaaa7afdddef100d0
105 rdf:rest Nd7ac44b52a6f4b568736b071067e2d3e
106 Ne3c7ded482544e6a85d6d022226f3cb0 rdf:first N9bde7ae548454dcd80cc216cfc51ee3b
107 rdf:rest N10e9e4b6b94349a4b9a5278cad08e54a
108 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
109 schema:name Mathematical Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
112 schema:name Pure Mathematics
113 rdf:type schema:DefinedTerm
114 sg:person.010467364517.31 schema:affiliation grid-institutes:None
115 schema:familyName Yan
116 schema:givenName Xuehu
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467364517.31
118 rdf:type schema:Person
119 sg:person.010553170175.34 schema:affiliation grid-institutes:None
120 schema:familyName Liu
121 schema:givenName Kesheng
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010553170175.34
123 rdf:type schema:Person
124 sg:person.010577640471.37 schema:affiliation grid-institutes:None
125 schema:familyName Ding
126 schema:givenName Wanmeng
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010577640471.37
128 rdf:type schema:Person
129 sg:person.013517427271.32 schema:affiliation grid-institutes:None
130 schema:familyName Liu
131 schema:givenName Lintao
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013517427271.32
133 rdf:type schema:Person
134 grid-institutes:None schema:alternateName Hefei Electronic Engineering Institute, 230037, Hefei, China
135 schema:name Hefei Electronic Engineering Institute, 230037, Hefei, China
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...