Secret Data-Driven Carrier-Free Secret Sharing Scheme Based on Error Correction Blocks of QR Codes View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017-09-16

AUTHORS

Song Wan , Yuliang Lu , Xuehu Yan , Hanlin Liu , Longdan Tan

ABSTRACT

In this paper, a novel secret data-driven carrier-free (semi structural formula) visual secret sharing (VSS) scheme with (2, 2) threshold based on the error correction blocks of QR codes is investigated. The proposed scheme is to search two QR codes that altered to satisfy the secret sharing modules in the error correction mechanism from the large datasets of QR codes according to the secret image, which is to embed the secret image into QR codes based on carrier-free secret sharing. The size of secret image is the same or closest with the region from the coordinate of (7, 7) to the lower right corner of QR codes. In this way, we can find the QR codes combination of embedding secret information maximization with secret data-driven based on Big data search. Each output share is a valid QR code which can be decoded correctly utilizing a QR code reader and it may reduce the likelihood of attracting the attention of potential attackers. The proposed scheme can reveal secret image visually with the abilities of stacking and XOR decryptions. The secret image can be recovered by human visual system (HVS) without any computation based on stacking. On the other hand, if the light-weight computation device is available, the secret image can be lossless revealed based on XOR operation. In addition, QR codes could assist alignment for VSS recovery. The experimental results show the effectiveness of our scheme. More... »

PAGES

231-241

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-981-10-6385-5_20

DOI

http://dx.doi.org/10.1007/978-981-10-6385-5_20

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091806386


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hefei Electronic Engineering Institute, 230037, Hefei, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Hefei Electronic Engineering Institute, 230037, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wan", 
        "givenName": "Song", 
        "id": "sg:person.012077574322.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012077574322.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei Electronic Engineering Institute, 230037, Hefei, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Hefei Electronic Engineering Institute, 230037, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Yuliang", 
        "id": "sg:person.015112370271.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015112370271.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei Electronic Engineering Institute, 230037, Hefei, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Hefei Electronic Engineering Institute, 230037, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Xuehu", 
        "id": "sg:person.010467364517.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467364517.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei Electronic Engineering Institute, 230037, Hefei, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Hefei Electronic Engineering Institute, 230037, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Hanlin", 
        "id": "sg:person.011535473267.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011535473267.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei Electronic Engineering Institute, 230037, Hefei, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Hefei Electronic Engineering Institute, 230037, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tan", 
        "givenName": "Longdan", 
        "id": "sg:person.013130434267.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013130434267.25"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-09-16", 
    "datePublishedReg": "2017-09-16", 
    "description": "In this paper, a novel secret data-driven carrier-free (semi structural formula) visual secret sharing (VSS) scheme with (2,\u00a02) threshold based on the error correction blocks of QR codes is investigated. The proposed scheme is to search two QR codes that altered to satisfy the secret sharing modules in the error correction mechanism from the large datasets of QR codes according to the secret image, which is to embed the secret image into QR codes based on carrier-free secret sharing. The size of secret image is the same or closest with the region from the coordinate of (7,\u00a07) to the lower right corner of QR codes. In this way, we can find the QR codes combination of embedding secret information maximization with secret data-driven based on Big data search. Each output share is a valid QR code which can be decoded correctly utilizing a QR code reader and it may reduce the likelihood of attracting the attention of potential attackers. The proposed scheme can reveal secret image visually with the abilities of stacking and XOR decryptions. The secret image can be recovered by human visual system (HVS) without any computation based on stacking. On the other hand, if the light-weight computation device is available, the secret image can be lossless revealed based on XOR operation. In addition, QR codes could assist alignment for VSS recovery. The experimental results show the effectiveness of our scheme.", 
    "editor": [
      {
        "familyName": "Zou", 
        "givenName": "Beiji", 
        "type": "Person"
      }, 
      {
        "familyName": "Li", 
        "givenName": "Min", 
        "type": "Person"
      }, 
      {
        "familyName": "Wang", 
        "givenName": "Hongzhi", 
        "type": "Person"
      }, 
      {
        "familyName": "Song", 
        "givenName": "Xianhua", 
        "type": "Person"
      }, 
      {
        "familyName": "Xie", 
        "givenName": "Wei", 
        "type": "Person"
      }, 
      {
        "familyName": "Lu", 
        "givenName": "Zeguang", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-981-10-6385-5_20", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-981-10-6384-8", 
        "978-981-10-6385-5"
      ], 
      "name": "Data Science", 
      "type": "Book"
    }, 
    "keywords": [
      "secret image", 
      "secret sharing scheme", 
      "QR code", 
      "error correction block", 
      "human visual system", 
      "sharing scheme", 
      "visual secret sharing scheme", 
      "QR code reader", 
      "correction block", 
      "big data search", 
      "valid QR code", 
      "VSS recovery", 
      "XOR decryptions", 
      "secret data", 
      "potential attackers", 
      "secret sharing", 
      "XOR operation", 
      "information maximization", 
      "code reader", 
      "computation devices", 
      "large datasets", 
      "data search", 
      "code combinations", 
      "images", 
      "code", 
      "experimental results", 
      "error correction mechanism", 
      "scheme", 
      "correction mechanism", 
      "visual system", 
      "decryption", 
      "attacker", 
      "sharing", 
      "dataset", 
      "lossless", 
      "computation", 
      "module", 
      "output shares", 
      "maximization", 
      "block", 
      "search", 
      "right corner", 
      "effectiveness", 
      "devices", 
      "operation", 
      "system", 
      "alignment", 
      "way", 
      "coordinates", 
      "data", 
      "readers", 
      "hand", 
      "attention", 
      "share", 
      "ability", 
      "results", 
      "threshold", 
      "corner", 
      "combination", 
      "size", 
      "addition", 
      "mechanism", 
      "likelihood", 
      "region", 
      "recovery", 
      "paper"
    ], 
    "name": "Secret Data-Driven Carrier-Free Secret Sharing Scheme Based on Error Correction Blocks of QR Codes", 
    "pagination": "231-241", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091806386"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-981-10-6385-5_20"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-981-10-6385-5_20", 
      "https://app.dimensions.ai/details/publication/pub.1091806386"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-08-04T17:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/chapter/chapter_144.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-981-10-6385-5_20"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-6385-5_20'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-6385-5_20'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-6385-5_20'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-6385-5_20'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      22 PREDICATES      90 URIs      83 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-981-10-6385-5_20 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N3d1f8d11e5144404b6cb84e11ad24a18
4 schema:datePublished 2017-09-16
5 schema:datePublishedReg 2017-09-16
6 schema:description In this paper, a novel secret data-driven carrier-free (semi structural formula) visual secret sharing (VSS) scheme with (2, 2) threshold based on the error correction blocks of QR codes is investigated. The proposed scheme is to search two QR codes that altered to satisfy the secret sharing modules in the error correction mechanism from the large datasets of QR codes according to the secret image, which is to embed the secret image into QR codes based on carrier-free secret sharing. The size of secret image is the same or closest with the region from the coordinate of (7, 7) to the lower right corner of QR codes. In this way, we can find the QR codes combination of embedding secret information maximization with secret data-driven based on Big data search. Each output share is a valid QR code which can be decoded correctly utilizing a QR code reader and it may reduce the likelihood of attracting the attention of potential attackers. The proposed scheme can reveal secret image visually with the abilities of stacking and XOR decryptions. The secret image can be recovered by human visual system (HVS) without any computation based on stacking. On the other hand, if the light-weight computation device is available, the secret image can be lossless revealed based on XOR operation. In addition, QR codes could assist alignment for VSS recovery. The experimental results show the effectiveness of our scheme.
7 schema:editor N954cfe5aee824d8dae51ff1394c6d7a9
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N317b0fb21c5e4df79fc3fe53d2b6a1b9
11 schema:keywords QR code
12 QR code reader
13 VSS recovery
14 XOR decryptions
15 XOR operation
16 ability
17 addition
18 alignment
19 attacker
20 attention
21 big data search
22 block
23 code
24 code combinations
25 code reader
26 combination
27 computation
28 computation devices
29 coordinates
30 corner
31 correction block
32 correction mechanism
33 data
34 data search
35 dataset
36 decryption
37 devices
38 effectiveness
39 error correction block
40 error correction mechanism
41 experimental results
42 hand
43 human visual system
44 images
45 information maximization
46 large datasets
47 likelihood
48 lossless
49 maximization
50 mechanism
51 module
52 operation
53 output shares
54 paper
55 potential attackers
56 readers
57 recovery
58 region
59 results
60 right corner
61 scheme
62 search
63 secret data
64 secret image
65 secret sharing
66 secret sharing scheme
67 share
68 sharing
69 sharing scheme
70 size
71 system
72 threshold
73 valid QR code
74 visual secret sharing scheme
75 visual system
76 way
77 schema:name Secret Data-Driven Carrier-Free Secret Sharing Scheme Based on Error Correction Blocks of QR Codes
78 schema:pagination 231-241
79 schema:productId N255b88a25ea44c39b447e06fa2a52fa0
80 Na2d20edaf0f4467dabe09970abb391d9
81 schema:publisher N3fe9aa5741d84fa6a380257104e7e6dd
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091806386
83 https://doi.org/10.1007/978-981-10-6385-5_20
84 schema:sdDatePublished 2022-08-04T17:14
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N5c3e6533386c42f2ac3d6aae5cbdd609
87 schema:url https://doi.org/10.1007/978-981-10-6385-5_20
88 sgo:license sg:explorer/license/
89 sgo:sdDataset chapters
90 rdf:type schema:Chapter
91 N0183580f3d3e49bd863b9f1fc9724be3 schema:familyName Song
92 schema:givenName Xianhua
93 rdf:type schema:Person
94 N02d438b5c5514c7d9144230761d17d63 rdf:first sg:person.015112370271.93
95 rdf:rest Na205d63414fa48a985b4a4f6a45b4d15
96 N0b3130f25b59429c93f19bec2a9026a2 rdf:first N41c22659233f47d0ab8c943ed5033bd6
97 rdf:rest N0df104d84a1945df99600ec50d3bfc39
98 N0df104d84a1945df99600ec50d3bfc39 rdf:first N97225918b269446f9e575f9cd62c8cb7
99 rdf:rest rdf:nil
100 N255b88a25ea44c39b447e06fa2a52fa0 schema:name doi
101 schema:value 10.1007/978-981-10-6385-5_20
102 rdf:type schema:PropertyValue
103 N317b0fb21c5e4df79fc3fe53d2b6a1b9 schema:isbn 978-981-10-6384-8
104 978-981-10-6385-5
105 schema:name Data Science
106 rdf:type schema:Book
107 N373540f70a1e4f20ae010d3294566c41 rdf:first N3c2ff8b2374c48da931992772409e017
108 rdf:rest Nb9a04efa0e464a0380d187e2acf8d830
109 N3a9460df2b0346f9be19cb273de10602 rdf:first sg:person.011535473267.30
110 rdf:rest Nc7c58e02ae7642c79a2075e3e7cbac39
111 N3c2ff8b2374c48da931992772409e017 schema:familyName Wang
112 schema:givenName Hongzhi
113 rdf:type schema:Person
114 N3d1f8d11e5144404b6cb84e11ad24a18 rdf:first sg:person.012077574322.79
115 rdf:rest N02d438b5c5514c7d9144230761d17d63
116 N3fe9aa5741d84fa6a380257104e7e6dd schema:name Springer Nature
117 rdf:type schema:Organisation
118 N41c22659233f47d0ab8c943ed5033bd6 schema:familyName Xie
119 schema:givenName Wei
120 rdf:type schema:Person
121 N5c3e6533386c42f2ac3d6aae5cbdd609 schema:name Springer Nature - SN SciGraph project
122 rdf:type schema:Organization
123 N954cfe5aee824d8dae51ff1394c6d7a9 rdf:first Nc4ae971fd2444362bcb12e5cbc48a17a
124 rdf:rest Nd54d002e53b8400ca74d75a08b3443aa
125 N97225918b269446f9e575f9cd62c8cb7 schema:familyName Lu
126 schema:givenName Zeguang
127 rdf:type schema:Person
128 Na205d63414fa48a985b4a4f6a45b4d15 rdf:first sg:person.010467364517.31
129 rdf:rest N3a9460df2b0346f9be19cb273de10602
130 Na2d20edaf0f4467dabe09970abb391d9 schema:name dimensions_id
131 schema:value pub.1091806386
132 rdf:type schema:PropertyValue
133 Nb9a04efa0e464a0380d187e2acf8d830 rdf:first N0183580f3d3e49bd863b9f1fc9724be3
134 rdf:rest N0b3130f25b59429c93f19bec2a9026a2
135 Nc1cc3c41078d4141b2476e7b168f1a62 schema:familyName Li
136 schema:givenName Min
137 rdf:type schema:Person
138 Nc4ae971fd2444362bcb12e5cbc48a17a schema:familyName Zou
139 schema:givenName Beiji
140 rdf:type schema:Person
141 Nc7c58e02ae7642c79a2075e3e7cbac39 rdf:first sg:person.013130434267.25
142 rdf:rest rdf:nil
143 Nd54d002e53b8400ca74d75a08b3443aa rdf:first Nc1cc3c41078d4141b2476e7b168f1a62
144 rdf:rest N373540f70a1e4f20ae010d3294566c41
145 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
146 schema:name Information and Computing Sciences
147 rdf:type schema:DefinedTerm
148 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
149 schema:name Artificial Intelligence and Image Processing
150 rdf:type schema:DefinedTerm
151 sg:person.010467364517.31 schema:affiliation grid-institutes:None
152 schema:familyName Yan
153 schema:givenName Xuehu
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467364517.31
155 rdf:type schema:Person
156 sg:person.011535473267.30 schema:affiliation grid-institutes:None
157 schema:familyName Liu
158 schema:givenName Hanlin
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011535473267.30
160 rdf:type schema:Person
161 sg:person.012077574322.79 schema:affiliation grid-institutes:None
162 schema:familyName Wan
163 schema:givenName Song
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012077574322.79
165 rdf:type schema:Person
166 sg:person.013130434267.25 schema:affiliation grid-institutes:None
167 schema:familyName Tan
168 schema:givenName Longdan
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013130434267.25
170 rdf:type schema:Person
171 sg:person.015112370271.93 schema:affiliation grid-institutes:None
172 schema:familyName Lu
173 schema:givenName Yuliang
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015112370271.93
175 rdf:type schema:Person
176 grid-institutes:None schema:alternateName Hefei Electronic Engineering Institute, 230037, Hefei, China
177 schema:name Hefei Electronic Engineering Institute, 230037, Hefei, China
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...