Secret Data-Driven Carrier-Free Secret Sharing Scheme Based on Error Correction Blocks of QR Codes View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017-09-16

AUTHORS

Song Wan , Yuliang Lu , Xuehu Yan , Hanlin Liu , Longdan Tan

ABSTRACT

In this paper, a novel secret data-driven carrier-free (semi structural formula) visual secret sharing (VSS) scheme with (2, 2) threshold based on the error correction blocks of QR codes is investigated. The proposed scheme is to search two QR codes that altered to satisfy the secret sharing modules in the error correction mechanism from the large datasets of QR codes according to the secret image, which is to embed the secret image into QR codes based on carrier-free secret sharing. The size of secret image is the same or closest with the region from the coordinate of (7, 7) to the lower right corner of QR codes. In this way, we can find the QR codes combination of embedding secret information maximization with secret data-driven based on Big data search. Each output share is a valid QR code which can be decoded correctly utilizing a QR code reader and it may reduce the likelihood of attracting the attention of potential attackers. The proposed scheme can reveal secret image visually with the abilities of stacking and XOR decryptions. The secret image can be recovered by human visual system (HVS) without any computation based on stacking. On the other hand, if the light-weight computation device is available, the secret image can be lossless revealed based on XOR operation. In addition, QR codes could assist alignment for VSS recovery. The experimental results show the effectiveness of our scheme. More... »

PAGES

231-241

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-981-10-6385-5_20

DOI

http://dx.doi.org/10.1007/978-981-10-6385-5_20

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091806386


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hefei Electronic Engineering Institute, 230037, Hefei, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Hefei Electronic Engineering Institute, 230037, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wan", 
        "givenName": "Song", 
        "id": "sg:person.012077574322.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012077574322.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei Electronic Engineering Institute, 230037, Hefei, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Hefei Electronic Engineering Institute, 230037, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Yuliang", 
        "id": "sg:person.015112370271.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015112370271.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei Electronic Engineering Institute, 230037, Hefei, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Hefei Electronic Engineering Institute, 230037, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Xuehu", 
        "id": "sg:person.010467364517.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467364517.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei Electronic Engineering Institute, 230037, Hefei, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Hefei Electronic Engineering Institute, 230037, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Hanlin", 
        "id": "sg:person.011535473267.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011535473267.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei Electronic Engineering Institute, 230037, Hefei, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Hefei Electronic Engineering Institute, 230037, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tan", 
        "givenName": "Longdan", 
        "id": "sg:person.013130434267.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013130434267.25"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-09-16", 
    "datePublishedReg": "2017-09-16", 
    "description": "In this paper, a novel secret data-driven carrier-free (semi structural formula) visual secret sharing (VSS) scheme with (2,\u00a02) threshold based on the error correction blocks of QR codes is investigated. The proposed scheme is to search two QR codes that altered to satisfy the secret sharing modules in the error correction mechanism from the large datasets of QR codes according to the secret image, which is to embed the secret image into QR codes based on carrier-free secret sharing. The size of secret image is the same or closest with the region from the coordinate of (7,\u00a07) to the lower right corner of QR codes. In this way, we can find the QR codes combination of embedding secret information maximization with secret data-driven based on Big data search. Each output share is a valid QR code which can be decoded correctly utilizing a QR code reader and it may reduce the likelihood of attracting the attention of potential attackers. The proposed scheme can reveal secret image visually with the abilities of stacking and XOR decryptions. The secret image can be recovered by human visual system (HVS) without any computation based on stacking. On the other hand, if the light-weight computation device is available, the secret image can be lossless revealed based on XOR operation. In addition, QR codes could assist alignment for VSS recovery. The experimental results show the effectiveness of our scheme.", 
    "editor": [
      {
        "familyName": "Zou", 
        "givenName": "Beiji", 
        "type": "Person"
      }, 
      {
        "familyName": "Li", 
        "givenName": "Min", 
        "type": "Person"
      }, 
      {
        "familyName": "Wang", 
        "givenName": "Hongzhi", 
        "type": "Person"
      }, 
      {
        "familyName": "Song", 
        "givenName": "Xianhua", 
        "type": "Person"
      }, 
      {
        "familyName": "Xie", 
        "givenName": "Wei", 
        "type": "Person"
      }, 
      {
        "familyName": "Lu", 
        "givenName": "Zeguang", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-981-10-6385-5_20", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-981-10-6384-8", 
        "978-981-10-6385-5"
      ], 
      "name": "Data Science", 
      "type": "Book"
    }, 
    "keywords": [
      "secret image", 
      "secret sharing scheme", 
      "QR code", 
      "error correction block", 
      "human visual system", 
      "sharing scheme", 
      "visual secret sharing scheme", 
      "QR code reader", 
      "correction block", 
      "big data search", 
      "valid QR code", 
      "VSS recovery", 
      "XOR decryptions", 
      "secret data", 
      "potential attackers", 
      "secret sharing", 
      "XOR operation", 
      "information maximization", 
      "code reader", 
      "computation devices", 
      "large datasets", 
      "data search", 
      "code combinations", 
      "images", 
      "code", 
      "experimental results", 
      "error correction mechanism", 
      "scheme", 
      "correction mechanism", 
      "visual system", 
      "decryption", 
      "attacker", 
      "sharing", 
      "dataset", 
      "lossless", 
      "computation", 
      "module", 
      "output shares", 
      "maximization", 
      "block", 
      "search", 
      "right corner", 
      "effectiveness", 
      "devices", 
      "operation", 
      "system", 
      "alignment", 
      "way", 
      "coordinates", 
      "data", 
      "readers", 
      "hand", 
      "attention", 
      "share", 
      "ability", 
      "results", 
      "threshold", 
      "corner", 
      "combination", 
      "size", 
      "addition", 
      "mechanism", 
      "likelihood", 
      "region", 
      "recovery", 
      "paper"
    ], 
    "name": "Secret Data-Driven Carrier-Free Secret Sharing Scheme Based on Error Correction Blocks of QR Codes", 
    "pagination": "231-241", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091806386"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-981-10-6385-5_20"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-981-10-6385-5_20", 
      "https://app.dimensions.ai/details/publication/pub.1091806386"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_416.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-981-10-6385-5_20"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-6385-5_20'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-6385-5_20'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-6385-5_20'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-6385-5_20'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      22 PREDICATES      90 URIs      83 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-981-10-6385-5_20 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N4f1e974b903a48f28b3085071e4317d5
4 schema:datePublished 2017-09-16
5 schema:datePublishedReg 2017-09-16
6 schema:description In this paper, a novel secret data-driven carrier-free (semi structural formula) visual secret sharing (VSS) scheme with (2, 2) threshold based on the error correction blocks of QR codes is investigated. The proposed scheme is to search two QR codes that altered to satisfy the secret sharing modules in the error correction mechanism from the large datasets of QR codes according to the secret image, which is to embed the secret image into QR codes based on carrier-free secret sharing. The size of secret image is the same or closest with the region from the coordinate of (7, 7) to the lower right corner of QR codes. In this way, we can find the QR codes combination of embedding secret information maximization with secret data-driven based on Big data search. Each output share is a valid QR code which can be decoded correctly utilizing a QR code reader and it may reduce the likelihood of attracting the attention of potential attackers. The proposed scheme can reveal secret image visually with the abilities of stacking and XOR decryptions. The secret image can be recovered by human visual system (HVS) without any computation based on stacking. On the other hand, if the light-weight computation device is available, the secret image can be lossless revealed based on XOR operation. In addition, QR codes could assist alignment for VSS recovery. The experimental results show the effectiveness of our scheme.
7 schema:editor Nf03ab1fa014b4686b508274125954c9c
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N4d3980cb47c64b028a6173caefd2c77d
11 schema:keywords QR code
12 QR code reader
13 VSS recovery
14 XOR decryptions
15 XOR operation
16 ability
17 addition
18 alignment
19 attacker
20 attention
21 big data search
22 block
23 code
24 code combinations
25 code reader
26 combination
27 computation
28 computation devices
29 coordinates
30 corner
31 correction block
32 correction mechanism
33 data
34 data search
35 dataset
36 decryption
37 devices
38 effectiveness
39 error correction block
40 error correction mechanism
41 experimental results
42 hand
43 human visual system
44 images
45 information maximization
46 large datasets
47 likelihood
48 lossless
49 maximization
50 mechanism
51 module
52 operation
53 output shares
54 paper
55 potential attackers
56 readers
57 recovery
58 region
59 results
60 right corner
61 scheme
62 search
63 secret data
64 secret image
65 secret sharing
66 secret sharing scheme
67 share
68 sharing
69 sharing scheme
70 size
71 system
72 threshold
73 valid QR code
74 visual secret sharing scheme
75 visual system
76 way
77 schema:name Secret Data-Driven Carrier-Free Secret Sharing Scheme Based on Error Correction Blocks of QR Codes
78 schema:pagination 231-241
79 schema:productId N15f1116576bd45f19c66915ae0a09fb0
80 N182d1a6ca6e848618ce4f7050e3bdd9d
81 schema:publisher N9b2ed8c56627416aa9078b333601b64c
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091806386
83 https://doi.org/10.1007/978-981-10-6385-5_20
84 schema:sdDatePublished 2022-12-01T06:53
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher Nfffd20379884431fb512db5bdfbc96da
87 schema:url https://doi.org/10.1007/978-981-10-6385-5_20
88 sgo:license sg:explorer/license/
89 sgo:sdDataset chapters
90 rdf:type schema:Chapter
91 N00032aa303144a0b9eab593fa662be78 schema:familyName Song
92 schema:givenName Xianhua
93 rdf:type schema:Person
94 N012ab0c6e879419d83dfce2d1b4624f6 rdf:first sg:person.015112370271.93
95 rdf:rest N3f6b6873b0b14720b888401dae6c9e77
96 N07d857042531430c9f695835cf18b575 rdf:first Na106ed7362bb44bca631d475fd80b10f
97 rdf:rest rdf:nil
98 N1038c073420349398549f75b5d7b96bb rdf:first N213d7727b3ef4b668db04d89ee50353b
99 rdf:rest N07d857042531430c9f695835cf18b575
100 N15f1116576bd45f19c66915ae0a09fb0 schema:name dimensions_id
101 schema:value pub.1091806386
102 rdf:type schema:PropertyValue
103 N182d1a6ca6e848618ce4f7050e3bdd9d schema:name doi
104 schema:value 10.1007/978-981-10-6385-5_20
105 rdf:type schema:PropertyValue
106 N1aceaf9c913b42a0971a3916331cc3fe rdf:first sg:person.011535473267.30
107 rdf:rest Nd825d33b1ca34375ad1cdb03b64c2f3b
108 N213d7727b3ef4b668db04d89ee50353b schema:familyName Xie
109 schema:givenName Wei
110 rdf:type schema:Person
111 N3f6b6873b0b14720b888401dae6c9e77 rdf:first sg:person.010467364517.31
112 rdf:rest N1aceaf9c913b42a0971a3916331cc3fe
113 N4d3980cb47c64b028a6173caefd2c77d schema:isbn 978-981-10-6384-8
114 978-981-10-6385-5
115 schema:name Data Science
116 rdf:type schema:Book
117 N4f1e974b903a48f28b3085071e4317d5 rdf:first sg:person.012077574322.79
118 rdf:rest N012ab0c6e879419d83dfce2d1b4624f6
119 N7c90ade826c84baa9f231b10b5fd1bdd rdf:first N00032aa303144a0b9eab593fa662be78
120 rdf:rest N1038c073420349398549f75b5d7b96bb
121 N8184298b74f54953bb1dd807adec05ef rdf:first Nf8f2499b48154b94892f38b3800a8d7c
122 rdf:rest N7c90ade826c84baa9f231b10b5fd1bdd
123 N9b2ed8c56627416aa9078b333601b64c schema:name Springer Nature
124 rdf:type schema:Organisation
125 Na106ed7362bb44bca631d475fd80b10f schema:familyName Lu
126 schema:givenName Zeguang
127 rdf:type schema:Person
128 Na8311fbd894a42b1b893bf4bcf69d5af rdf:first Nc3c0d582f21b450eb29ad704a979f37a
129 rdf:rest N8184298b74f54953bb1dd807adec05ef
130 Nc3c0d582f21b450eb29ad704a979f37a schema:familyName Li
131 schema:givenName Min
132 rdf:type schema:Person
133 Nd53d288ac7c24cdf9ad2448ef7ca128b schema:familyName Zou
134 schema:givenName Beiji
135 rdf:type schema:Person
136 Nd825d33b1ca34375ad1cdb03b64c2f3b rdf:first sg:person.013130434267.25
137 rdf:rest rdf:nil
138 Nf03ab1fa014b4686b508274125954c9c rdf:first Nd53d288ac7c24cdf9ad2448ef7ca128b
139 rdf:rest Na8311fbd894a42b1b893bf4bcf69d5af
140 Nf8f2499b48154b94892f38b3800a8d7c schema:familyName Wang
141 schema:givenName Hongzhi
142 rdf:type schema:Person
143 Nfffd20379884431fb512db5bdfbc96da schema:name Springer Nature - SN SciGraph project
144 rdf:type schema:Organization
145 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
146 schema:name Information and Computing Sciences
147 rdf:type schema:DefinedTerm
148 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
149 schema:name Artificial Intelligence and Image Processing
150 rdf:type schema:DefinedTerm
151 sg:person.010467364517.31 schema:affiliation grid-institutes:None
152 schema:familyName Yan
153 schema:givenName Xuehu
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467364517.31
155 rdf:type schema:Person
156 sg:person.011535473267.30 schema:affiliation grid-institutes:None
157 schema:familyName Liu
158 schema:givenName Hanlin
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011535473267.30
160 rdf:type schema:Person
161 sg:person.012077574322.79 schema:affiliation grid-institutes:None
162 schema:familyName Wan
163 schema:givenName Song
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012077574322.79
165 rdf:type schema:Person
166 sg:person.013130434267.25 schema:affiliation grid-institutes:None
167 schema:familyName Tan
168 schema:givenName Longdan
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013130434267.25
170 rdf:type schema:Person
171 sg:person.015112370271.93 schema:affiliation grid-institutes:None
172 schema:familyName Lu
173 schema:givenName Yuliang
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015112370271.93
175 rdf:type schema:Person
176 grid-institutes:None schema:alternateName Hefei Electronic Engineering Institute, 230037, Hefei, China
177 schema:name Hefei Electronic Engineering Institute, 230037, Hefei, China
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...