NMR of Quadrupole Nuclei in Organic Compounds View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018

AUTHORS

Kazuhiko Yamada

ABSTRACT

General aspects of nuclear magnetic resonance (NMR) of quadrupole nuclei in organic solids, including theoretical background on quadrupole interactions and analysis of the characteristic line shapes that arise from quadrupole and/or chemical shift interactions, are described. Two theoretical approaches for spectral simulations, the perturbation method, and the direct diagonalization method, are discussed with examples of 17O (I = 5/2), 33S (I = 3/2), and 79/81Br (I = 3/2) solid-state NMR analysis of organic compounds, as well as some examples of inorganic compounds with larger quadrupole interactions. When the magnitude of the quadrupole interactions is smaller than that of the Zeeman interactions, the perturbation method, in which equations can be definitively obtained to express the first- and second-order quadrupole interactions under static or magic-angle spinning conditions, is applicable. Otherwise, the direct diagonalization method, in which the combined Zeeman and quadrupole Hamiltonian is numerically calculated to derive probabilities for each transition, must be applied for spectral simulations. Several experimental techniques used to obtain NMR spectra broadened by large quadrupole interactions are briefly described. More... »

PAGES

519-543

References to SciGraph publications

Book

TITLE

Experimental Approaches of NMR Spectroscopy

ISBN

978-981-10-5965-0
978-981-10-5966-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-981-10-5966-7_19

DOI

http://dx.doi.org/10.1007/978-981-10-5966-7_19

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092985340


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "K\u014dchi University", 
          "id": "https://www.grid.ac/institutes/grid.278276.e", 
          "name": [
            "Kochi University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamada", 
        "givenName": "Kazuhiko", 
        "id": "sg:person.010110677675.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010110677675.66"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jmr.2010.08.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004055183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004634513", 
          "https://doi.org/10.1038/nature13029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmr.2004.07.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005843918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ssnmr.2008.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009425881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molstruc.2007.11.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012227741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ssnmr.2006.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013578593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2364(91)90327-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016193668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cplett.2015.04.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016671386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cplett.2015.04.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016671386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cplett.2015.04.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016671386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-09441-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024081156", 
          "https://doi.org/10.1007/978-3-662-09441-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-09441-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024081156", 
          "https://doi.org/10.1007/978-3-662-09441-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cplett.2014.10.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025469789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0079-6565(93)80001-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026441364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2221/jcsj.51.64", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027736332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5111/bunkou.55.99", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031387562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2364(82)90201-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034807740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0066-4103(10)70001-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041868471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-68756-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051058547", 
          "https://doi.org/10.1007/978-3-642-68756-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-68756-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051058547", 
          "https://doi.org/10.1007/978-3-642-68756-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja0008315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055705321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja0008315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055705321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00124a023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055708385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja9939791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055873295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1670988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057747451"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018", 
    "datePublishedReg": "2018-01-01", 
    "description": "General aspects of nuclear magnetic resonance (NMR) of quadrupole nuclei in organic solids, including theoretical background on quadrupole interactions and analysis of the characteristic line shapes that arise from quadrupole and/or chemical shift interactions, are described. Two theoretical approaches for spectral simulations, the perturbation method, and the direct diagonalization method, are discussed with examples of 17O (I = 5/2), 33S (I = 3/2), and 79/81Br (I = 3/2) solid-state NMR analysis of organic compounds, as well as some examples of inorganic compounds with larger quadrupole interactions. When the magnitude of the quadrupole interactions is smaller than that of the Zeeman interactions, the perturbation method, in which equations can be definitively obtained to express the first- and second-order quadrupole interactions under static or magic-angle spinning conditions, is applicable. Otherwise, the direct diagonalization method, in which the combined Zeeman and quadrupole Hamiltonian is numerically calculated to derive probabilities for each transition, must be applied for spectral simulations. Several experimental techniques used to obtain NMR spectra broadened by large quadrupole interactions are briefly described.", 
    "editor": [
      {
        "familyName": "The Nuclear Magnetic Resonance Soci", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-981-10-5966-7_19", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-981-10-5965-0", 
        "978-981-10-5966-7"
      ], 
      "name": "Experimental Approaches of NMR Spectroscopy", 
      "type": "Book"
    }, 
    "name": "NMR of Quadrupole Nuclei in Organic Compounds", 
    "pagination": "519-543", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-981-10-5966-7_19"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8f18d552212b50962271ace42f3e99fab1e62294654c7c1e9cc3a74cf34949c5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092985340"
        ]
      }
    ], 
    "publisher": {
      "location": "Singapore", 
      "name": "Springer Singapore", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-981-10-5966-7_19", 
      "https://app.dimensions.ai/details/publication/pub.1092985340"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T00:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000280.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-981-10-5966-7_19"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-5966-7_19'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-5966-7_19'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-5966-7_19'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-5966-7_19'


 

This table displays all metadata directly associated to this object as RDF triples.

127 TRIPLES      23 PREDICATES      47 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-981-10-5966-7_19 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N7ad903d26877491481e2884592739a15
4 schema:citation sg:pub.10.1007/978-3-642-68756-3
5 sg:pub.10.1007/978-3-662-09441-9
6 sg:pub.10.1038/nature13029
7 https://doi.org/10.1016/0022-2364(82)90201-3
8 https://doi.org/10.1016/0022-2364(91)90327-p
9 https://doi.org/10.1016/0079-6565(93)80001-a
10 https://doi.org/10.1016/j.cplett.2014.10.061
11 https://doi.org/10.1016/j.cplett.2015.04.040
12 https://doi.org/10.1016/j.jmr.2004.07.011
13 https://doi.org/10.1016/j.jmr.2010.08.022
14 https://doi.org/10.1016/j.molstruc.2007.11.059
15 https://doi.org/10.1016/j.ssnmr.2006.09.003
16 https://doi.org/10.1016/j.ssnmr.2008.04.001
17 https://doi.org/10.1016/s0066-4103(10)70001-6
18 https://doi.org/10.1021/ja0008315
19 https://doi.org/10.1021/ja00124a023
20 https://doi.org/10.1021/ja9939791
21 https://doi.org/10.1063/1.1670988
22 https://doi.org/10.2221/jcsj.51.64
23 https://doi.org/10.5111/bunkou.55.99
24 schema:datePublished 2018
25 schema:datePublishedReg 2018-01-01
26 schema:description General aspects of nuclear magnetic resonance (NMR) of quadrupole nuclei in organic solids, including theoretical background on quadrupole interactions and analysis of the characteristic line shapes that arise from quadrupole and/or chemical shift interactions, are described. Two theoretical approaches for spectral simulations, the perturbation method, and the direct diagonalization method, are discussed with examples of 17O (I = 5/2), 33S (I = 3/2), and 79/81Br (I = 3/2) solid-state NMR analysis of organic compounds, as well as some examples of inorganic compounds with larger quadrupole interactions. When the magnitude of the quadrupole interactions is smaller than that of the Zeeman interactions, the perturbation method, in which equations can be definitively obtained to express the first- and second-order quadrupole interactions under static or magic-angle spinning conditions, is applicable. Otherwise, the direct diagonalization method, in which the combined Zeeman and quadrupole Hamiltonian is numerically calculated to derive probabilities for each transition, must be applied for spectral simulations. Several experimental techniques used to obtain NMR spectra broadened by large quadrupole interactions are briefly described.
27 schema:editor N5f4ae011d2194ee48d5af40283e3f399
28 schema:genre chapter
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf N26bab56c44a74171b93fa9decbbe0bde
32 schema:name NMR of Quadrupole Nuclei in Organic Compounds
33 schema:pagination 519-543
34 schema:productId N021c916f5e1f4c568cd584c124c9ad75
35 Na51b14a5cf644143be8b9a39a0bd5b0b
36 Nf6eb5e3d344346f6a920726f73b504f9
37 schema:publisher Nc313603bbee344d0b3011af2f314b137
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092985340
39 https://doi.org/10.1007/978-981-10-5966-7_19
40 schema:sdDatePublished 2019-04-16T00:52
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N507f3fc584f747a2a18f14b34f6756a4
43 schema:url http://link.springer.com/10.1007/978-981-10-5966-7_19
44 sgo:license sg:explorer/license/
45 sgo:sdDataset chapters
46 rdf:type schema:Chapter
47 N021c916f5e1f4c568cd584c124c9ad75 schema:name readcube_id
48 schema:value 8f18d552212b50962271ace42f3e99fab1e62294654c7c1e9cc3a74cf34949c5
49 rdf:type schema:PropertyValue
50 N26bab56c44a74171b93fa9decbbe0bde schema:isbn 978-981-10-5965-0
51 978-981-10-5966-7
52 schema:name Experimental Approaches of NMR Spectroscopy
53 rdf:type schema:Book
54 N3c17ca379d5e486199c697ad2eaa30ef schema:familyName The Nuclear Magnetic Resonance Soci
55 rdf:type schema:Person
56 N507f3fc584f747a2a18f14b34f6756a4 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N5f4ae011d2194ee48d5af40283e3f399 rdf:first N3c17ca379d5e486199c697ad2eaa30ef
59 rdf:rest rdf:nil
60 N7ad903d26877491481e2884592739a15 rdf:first sg:person.010110677675.66
61 rdf:rest rdf:nil
62 Na51b14a5cf644143be8b9a39a0bd5b0b schema:name dimensions_id
63 schema:value pub.1092985340
64 rdf:type schema:PropertyValue
65 Nc313603bbee344d0b3011af2f314b137 schema:location Singapore
66 schema:name Springer Singapore
67 rdf:type schema:Organisation
68 Nf6eb5e3d344346f6a920726f73b504f9 schema:name doi
69 schema:value 10.1007/978-981-10-5966-7_19
70 rdf:type schema:PropertyValue
71 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
72 schema:name Physical Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
75 schema:name Other Physical Sciences
76 rdf:type schema:DefinedTerm
77 sg:person.010110677675.66 schema:affiliation https://www.grid.ac/institutes/grid.278276.e
78 schema:familyName Yamada
79 schema:givenName Kazuhiko
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010110677675.66
81 rdf:type schema:Person
82 sg:pub.10.1007/978-3-642-68756-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051058547
83 https://doi.org/10.1007/978-3-642-68756-3
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/978-3-662-09441-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024081156
86 https://doi.org/10.1007/978-3-662-09441-9
87 rdf:type schema:CreativeWork
88 sg:pub.10.1038/nature13029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004634513
89 https://doi.org/10.1038/nature13029
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/0022-2364(82)90201-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034807740
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/0022-2364(91)90327-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1016193668
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/0079-6565(93)80001-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1026441364
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.cplett.2014.10.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025469789
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.cplett.2015.04.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016671386
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.jmr.2004.07.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005843918
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.jmr.2010.08.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004055183
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.molstruc.2007.11.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012227741
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.ssnmr.2006.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013578593
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.ssnmr.2008.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009425881
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/s0066-4103(10)70001-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041868471
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1021/ja0008315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055705321
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1021/ja00124a023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055708385
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1021/ja9939791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055873295
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1063/1.1670988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057747451
120 rdf:type schema:CreativeWork
121 https://doi.org/10.2221/jcsj.51.64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027736332
122 rdf:type schema:CreativeWork
123 https://doi.org/10.5111/bunkou.55.99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031387562
124 rdf:type schema:CreativeWork
125 https://www.grid.ac/institutes/grid.278276.e schema:alternateName Kōchi University
126 schema:name Kochi University
127 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...