Synthesis of Aluminium–Graphene Nanocomposite Sintered Using Spark Plasma Sintering View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018

AUTHORS

Vipin Jain , Anil Kumar , Bathula Sivaiah , Ajay Dhar

ABSTRACT

Graphene (Gr) has attracted tremendous attention for the synthesis of lightweight structural nanocomposites due to its excellent properties such as high Young’s modulus (1 TPa), high fracture strength (~125 GPa) and extreme thermal conductivity (~5000 W/m/K). Fabrication of pure aluminium–graphene nanocomposite is conducted using a chemical synthesis route followed by consolidation using spark plasma sintering process. The pure aluminium powder was initially cryomilled to refine the grain structure. Subsequently, nanocomposites of Al-reduced graphene (Al-Gr) were synthesized using a chemical method employing different proportions (by volume fraction) of graphene oxide (GO) dispersed in pure aluminium powder. The synthesized powder was ball milled under optimized conditions followed by spark plasma sintering. The powder and sintered Al-Gr nanocomposites are characterized by X-ray diffraction, Raman spectroscopy, SEM and TEM microscopy. The mechanical behaviour is evaluated using the indentation hardness method. GO was found fully converted to reduced graphene during SPS. The increased proportion of reduced graphene in aluminium powder has suggested improved mechanical properties such as hardness after SPS. The structure–property correlation of synthesized Al-Gr nanocomposites is discussed with regard to the improvement in the mechanical behaviour. More... »

PAGES

155-164

Book

TITLE

Frontiers in Materials Processing, Applications, Research and Technology

ISBN

978-981-10-4818-0
978-981-10-4819-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-981-10-4819-7_14

DOI

http://dx.doi.org/10.1007/978-981-10-4819-7_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092666208


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "CSIR-National Physical Laboratory"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jain", 
        "givenName": "Vipin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "CSIR-National Physical Laboratory"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kumar", 
        "givenName": "Anil", 
        "id": "sg:person.01105162563.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105162563.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "CSIR-National Physical Laboratory"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sivaiah", 
        "givenName": "Bathula", 
        "id": "sg:person.015536304664.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015536304664.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "CSIR-National Physical Laboratory"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dhar", 
        "givenName": "Ajay", 
        "id": "sg:person.0621643545.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621643545.89"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.97.187401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001174697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.187401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001174697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2011.01.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003478288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2011.01.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003478288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/22/4/045704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008054395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201302495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009659468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5012/bkcs.2012.33.1.209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015481542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4nr00916a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016310974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c1cs15078b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018274097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1102896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019008412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1116/1.2789446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020125170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c0sm00667j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038130923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c0sm00667j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038130923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2011.05.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040637741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.201201418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041279113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2012.01.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046083241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn1028967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056223079"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018", 
    "datePublishedReg": "2018-01-01", 
    "description": "Graphene (Gr) has attracted tremendous attention for the synthesis of lightweight structural nanocomposites due to its excellent properties such as high Young\u2019s modulus (1 TPa), high fracture strength (~125 GPa) and extreme thermal conductivity (~5000 W/m/K). Fabrication of pure aluminium\u2013graphene nanocomposite is conducted using a chemical synthesis route followed by consolidation using spark plasma sintering process. The pure aluminium powder was initially cryomilled to refine the grain structure. Subsequently, nanocomposites of Al-reduced graphene (Al-Gr) were synthesized using a chemical method employing different proportions (by volume fraction) of graphene oxide (GO) dispersed in pure aluminium powder. The synthesized powder was ball milled under optimized conditions followed by spark plasma sintering. The powder and sintered Al-Gr nanocomposites are characterized by X-ray diffraction, Raman spectroscopy, SEM and TEM microscopy. The mechanical behaviour is evaluated using the indentation hardness method. GO was found fully converted to reduced graphene during SPS. The increased proportion of reduced graphene in aluminium powder has suggested improved mechanical properties such as hardness after SPS. The structure\u2013property correlation of synthesized Al-Gr nanocomposites is discussed with regard to the improvement in the mechanical behaviour.", 
    "editor": [
      {
        "familyName": "Muruganant", 
        "givenName": "M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Chirazi", 
        "givenName": "Ali", 
        "type": "Person"
      }, 
      {
        "familyName": "Raj", 
        "givenName": "Baldev", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-981-10-4819-7_14", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-981-10-4818-0", 
        "978-981-10-4819-7"
      ], 
      "name": "Frontiers in Materials Processing, Applications, Research and Technology", 
      "type": "Book"
    }, 
    "name": "Synthesis of Aluminium\u2013Graphene Nanocomposite Sintered Using Spark Plasma Sintering", 
    "pagination": "155-164", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-981-10-4819-7_14"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "094f3accba99b375b94c06a927fbe6ac9470a467fc218074839b9e48830461d0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092666208"
        ]
      }
    ], 
    "publisher": {
      "location": "Singapore", 
      "name": "Springer Singapore", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-981-10-4819-7_14", 
      "https://app.dimensions.ai/details/publication/pub.1092666208"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T22:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000280.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-981-10-4819-7_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-4819-7_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-4819-7_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-4819-7_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-4819-7_14'


 

This table displays all metadata directly associated to this object as RDF triples.

142 TRIPLES      23 PREDICATES      41 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-981-10-4819-7_14 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nfd30e647c6e44c82ac7b770cd7d76f89
4 schema:citation https://doi.org/10.1002/adfm.201201418
5 https://doi.org/10.1002/adma.201302495
6 https://doi.org/10.1016/j.carbon.2011.01.021
7 https://doi.org/10.1016/j.scriptamat.2011.05.022
8 https://doi.org/10.1016/j.scriptamat.2012.01.012
9 https://doi.org/10.1021/nn1028967
10 https://doi.org/10.1039/c0sm00667j
11 https://doi.org/10.1039/c1cs15078b
12 https://doi.org/10.1039/c4nr00916a
13 https://doi.org/10.1088/0957-4484/22/4/045704
14 https://doi.org/10.1103/physrevlett.97.187401
15 https://doi.org/10.1116/1.2789446
16 https://doi.org/10.1126/science.1102896
17 https://doi.org/10.5012/bkcs.2012.33.1.209
18 schema:datePublished 2018
19 schema:datePublishedReg 2018-01-01
20 schema:description Graphene (Gr) has attracted tremendous attention for the synthesis of lightweight structural nanocomposites due to its excellent properties such as high Young’s modulus (1 TPa), high fracture strength (~125 GPa) and extreme thermal conductivity (~5000 W/m/K). Fabrication of pure aluminium–graphene nanocomposite is conducted using a chemical synthesis route followed by consolidation using spark plasma sintering process. The pure aluminium powder was initially cryomilled to refine the grain structure. Subsequently, nanocomposites of Al-reduced graphene (Al-Gr) were synthesized using a chemical method employing different proportions (by volume fraction) of graphene oxide (GO) dispersed in pure aluminium powder. The synthesized powder was ball milled under optimized conditions followed by spark plasma sintering. The powder and sintered Al-Gr nanocomposites are characterized by X-ray diffraction, Raman spectroscopy, SEM and TEM microscopy. The mechanical behaviour is evaluated using the indentation hardness method. GO was found fully converted to reduced graphene during SPS. The increased proportion of reduced graphene in aluminium powder has suggested improved mechanical properties such as hardness after SPS. The structure–property correlation of synthesized Al-Gr nanocomposites is discussed with regard to the improvement in the mechanical behaviour.
21 schema:editor Nd6726d16c21146179b46ec9bd2cfdeb6
22 schema:genre chapter
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N08b64e43cc4243edb7491c675e3bf0ed
26 schema:name Synthesis of Aluminium–Graphene Nanocomposite Sintered Using Spark Plasma Sintering
27 schema:pagination 155-164
28 schema:productId N5c11dfc8a0be4be3a5bb8a6c2ed5e666
29 N7760428458b642de93a23590fec14f17
30 Nfc5b94dc2a134fe0b110ae18269ef7ff
31 schema:publisher N1b536d3090a1458e85d9f48ac2d8e4e6
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092666208
33 https://doi.org/10.1007/978-981-10-4819-7_14
34 schema:sdDatePublished 2019-04-15T22:59
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher Nfd94beb8d79246a3bd059394df68d9f2
37 schema:url http://link.springer.com/10.1007/978-981-10-4819-7_14
38 sgo:license sg:explorer/license/
39 sgo:sdDataset chapters
40 rdf:type schema:Chapter
41 N08b64e43cc4243edb7491c675e3bf0ed schema:isbn 978-981-10-4818-0
42 978-981-10-4819-7
43 schema:name Frontiers in Materials Processing, Applications, Research and Technology
44 rdf:type schema:Book
45 N134e908d7b8c4e9b89ba09eeef8fe6b5 schema:name CSIR-National Physical Laboratory
46 rdf:type schema:Organization
47 N15053ce8f99944e3a666af68a20ee861 rdf:first sg:person.015536304664.43
48 rdf:rest N3b224fa143ea41268660b4e086e1ea67
49 N1b536d3090a1458e85d9f48ac2d8e4e6 schema:location Singapore
50 schema:name Springer Singapore
51 rdf:type schema:Organisation
52 N3766ef388f2f49faa4a5de8c3ef793de schema:name CSIR-National Physical Laboratory
53 rdf:type schema:Organization
54 N3b224fa143ea41268660b4e086e1ea67 rdf:first sg:person.0621643545.89
55 rdf:rest rdf:nil
56 N59a0dae9ff3c4db199f1dfe86cf33cd9 schema:name CSIR-National Physical Laboratory
57 rdf:type schema:Organization
58 N5c11dfc8a0be4be3a5bb8a6c2ed5e666 schema:name readcube_id
59 schema:value 094f3accba99b375b94c06a927fbe6ac9470a467fc218074839b9e48830461d0
60 rdf:type schema:PropertyValue
61 N7760428458b642de93a23590fec14f17 schema:name dimensions_id
62 schema:value pub.1092666208
63 rdf:type schema:PropertyValue
64 N7acc2601e64546b485dab3f245e8d391 schema:familyName Muruganant
65 schema:givenName M.
66 rdf:type schema:Person
67 N8ca0d14d4e8d423eadeac8a0b2f6bd7c schema:name CSIR-National Physical Laboratory
68 rdf:type schema:Organization
69 Nbd436352a94b4d87a8c808181fd40f2f schema:familyName Chirazi
70 schema:givenName Ali
71 rdf:type schema:Person
72 Nca04406d8cac4b18a4e7a1bd58614955 rdf:first Nbd436352a94b4d87a8c808181fd40f2f
73 rdf:rest Nca358b8a971e4d73bb06a499ec299523
74 Nca358b8a971e4d73bb06a499ec299523 rdf:first Nd821a4e612644f3f914141039c2fb474
75 rdf:rest rdf:nil
76 Nd24bc5f5b21449918f1a312335ad4747 rdf:first sg:person.01105162563.46
77 rdf:rest N15053ce8f99944e3a666af68a20ee861
78 Nd6726d16c21146179b46ec9bd2cfdeb6 rdf:first N7acc2601e64546b485dab3f245e8d391
79 rdf:rest Nca04406d8cac4b18a4e7a1bd58614955
80 Nd821a4e612644f3f914141039c2fb474 schema:familyName Raj
81 schema:givenName Baldev
82 rdf:type schema:Person
83 Nfa3e908a88da4aa9af72df305e744f75 schema:affiliation N3766ef388f2f49faa4a5de8c3ef793de
84 schema:familyName Jain
85 schema:givenName Vipin
86 rdf:type schema:Person
87 Nfc5b94dc2a134fe0b110ae18269ef7ff schema:name doi
88 schema:value 10.1007/978-981-10-4819-7_14
89 rdf:type schema:PropertyValue
90 Nfd30e647c6e44c82ac7b770cd7d76f89 rdf:first Nfa3e908a88da4aa9af72df305e744f75
91 rdf:rest Nd24bc5f5b21449918f1a312335ad4747
92 Nfd94beb8d79246a3bd059394df68d9f2 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
95 schema:name Engineering
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
98 schema:name Materials Engineering
99 rdf:type schema:DefinedTerm
100 sg:person.01105162563.46 schema:affiliation N134e908d7b8c4e9b89ba09eeef8fe6b5
101 schema:familyName Kumar
102 schema:givenName Anil
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105162563.46
104 rdf:type schema:Person
105 sg:person.015536304664.43 schema:affiliation N59a0dae9ff3c4db199f1dfe86cf33cd9
106 schema:familyName Sivaiah
107 schema:givenName Bathula
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015536304664.43
109 rdf:type schema:Person
110 sg:person.0621643545.89 schema:affiliation N8ca0d14d4e8d423eadeac8a0b2f6bd7c
111 schema:familyName Dhar
112 schema:givenName Ajay
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621643545.89
114 rdf:type schema:Person
115 https://doi.org/10.1002/adfm.201201418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041279113
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1002/adma.201302495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009659468
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.carbon.2011.01.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003478288
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.scriptamat.2011.05.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040637741
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.scriptamat.2012.01.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046083241
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1021/nn1028967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056223079
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1039/c0sm00667j schema:sameAs https://app.dimensions.ai/details/publication/pub.1038130923
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1039/c1cs15078b schema:sameAs https://app.dimensions.ai/details/publication/pub.1018274097
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1039/c4nr00916a schema:sameAs https://app.dimensions.ai/details/publication/pub.1016310974
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1088/0957-4484/22/4/045704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008054395
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physrevlett.97.187401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001174697
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1116/1.2789446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020125170
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1126/science.1102896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019008412
140 rdf:type schema:CreativeWork
141 https://doi.org/10.5012/bkcs.2012.33.1.209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015481542
142 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...