Synthesis of Aluminium–Graphene Nanocomposite Sintered Using Spark Plasma Sintering View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018

AUTHORS

Vipin Jain , Anil Kumar , Bathula Sivaiah , Ajay Dhar

ABSTRACT

Graphene (Gr) has attracted tremendous attention for the synthesis of lightweight structural nanocomposites due to its excellent properties such as high Young’s modulus (1 TPa), high fracture strength (~125 GPa) and extreme thermal conductivity (~5000 W/m/K). Fabrication of pure aluminium–graphene nanocomposite is conducted using a chemical synthesis route followed by consolidation using spark plasma sintering process. The pure aluminium powder was initially cryomilled to refine the grain structure. Subsequently, nanocomposites of Al-reduced graphene (Al-Gr) were synthesized using a chemical method employing different proportions (by volume fraction) of graphene oxide (GO) dispersed in pure aluminium powder. The synthesized powder was ball milled under optimized conditions followed by spark plasma sintering. The powder and sintered Al-Gr nanocomposites are characterized by X-ray diffraction, Raman spectroscopy, SEM and TEM microscopy. The mechanical behaviour is evaluated using the indentation hardness method. GO was found fully converted to reduced graphene during SPS. The increased proportion of reduced graphene in aluminium powder has suggested improved mechanical properties such as hardness after SPS. The structure–property correlation of synthesized Al-Gr nanocomposites is discussed with regard to the improvement in the mechanical behaviour. More... »

PAGES

155-164

Book

TITLE

Frontiers in Materials Processing, Applications, Research and Technology

ISBN

978-981-10-4818-0
978-981-10-4819-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-981-10-4819-7_14

DOI

http://dx.doi.org/10.1007/978-981-10-4819-7_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092666208


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "CSIR-National Physical Laboratory"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jain", 
        "givenName": "Vipin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "CSIR-National Physical Laboratory"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kumar", 
        "givenName": "Anil", 
        "id": "sg:person.01105162563.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105162563.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "CSIR-National Physical Laboratory"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sivaiah", 
        "givenName": "Bathula", 
        "id": "sg:person.015536304664.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015536304664.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "CSIR-National Physical Laboratory"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dhar", 
        "givenName": "Ajay", 
        "id": "sg:person.0621643545.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621643545.89"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.97.187401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001174697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.187401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001174697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2011.01.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003478288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2011.01.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003478288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/22/4/045704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008054395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201302495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009659468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5012/bkcs.2012.33.1.209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015481542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4nr00916a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016310974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c1cs15078b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018274097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1102896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019008412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1116/1.2789446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020125170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c0sm00667j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038130923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c0sm00667j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038130923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2011.05.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040637741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.201201418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041279113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2012.01.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046083241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn1028967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056223079"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018", 
    "datePublishedReg": "2018-01-01", 
    "description": "Graphene (Gr) has attracted tremendous attention for the synthesis of lightweight structural nanocomposites due to its excellent properties such as high Young\u2019s modulus (1 TPa), high fracture strength (~125 GPa) and extreme thermal conductivity (~5000 W/m/K). Fabrication of pure aluminium\u2013graphene nanocomposite is conducted using a chemical synthesis route followed by consolidation using spark plasma sintering process. The pure aluminium powder was initially cryomilled to refine the grain structure. Subsequently, nanocomposites of Al-reduced graphene (Al-Gr) were synthesized using a chemical method employing different proportions (by volume fraction) of graphene oxide (GO) dispersed in pure aluminium powder. The synthesized powder was ball milled under optimized conditions followed by spark plasma sintering. The powder and sintered Al-Gr nanocomposites are characterized by X-ray diffraction, Raman spectroscopy, SEM and TEM microscopy. The mechanical behaviour is evaluated using the indentation hardness method. GO was found fully converted to reduced graphene during SPS. The increased proportion of reduced graphene in aluminium powder has suggested improved mechanical properties such as hardness after SPS. The structure\u2013property correlation of synthesized Al-Gr nanocomposites is discussed with regard to the improvement in the mechanical behaviour.", 
    "editor": [
      {
        "familyName": "Muruganant", 
        "givenName": "M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Chirazi", 
        "givenName": "Ali", 
        "type": "Person"
      }, 
      {
        "familyName": "Raj", 
        "givenName": "Baldev", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-981-10-4819-7_14", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-981-10-4818-0", 
        "978-981-10-4819-7"
      ], 
      "name": "Frontiers in Materials Processing, Applications, Research and Technology", 
      "type": "Book"
    }, 
    "name": "Synthesis of Aluminium\u2013Graphene Nanocomposite Sintered Using Spark Plasma Sintering", 
    "pagination": "155-164", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-981-10-4819-7_14"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "094f3accba99b375b94c06a927fbe6ac9470a467fc218074839b9e48830461d0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092666208"
        ]
      }
    ], 
    "publisher": {
      "location": "Singapore", 
      "name": "Springer Singapore", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-981-10-4819-7_14", 
      "https://app.dimensions.ai/details/publication/pub.1092666208"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T22:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000280.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-981-10-4819-7_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-4819-7_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-4819-7_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-4819-7_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-4819-7_14'


 

This table displays all metadata directly associated to this object as RDF triples.

142 TRIPLES      23 PREDICATES      41 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-981-10-4819-7_14 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N0b3e28bb159e4d169ec3557ff233041f
4 schema:citation https://doi.org/10.1002/adfm.201201418
5 https://doi.org/10.1002/adma.201302495
6 https://doi.org/10.1016/j.carbon.2011.01.021
7 https://doi.org/10.1016/j.scriptamat.2011.05.022
8 https://doi.org/10.1016/j.scriptamat.2012.01.012
9 https://doi.org/10.1021/nn1028967
10 https://doi.org/10.1039/c0sm00667j
11 https://doi.org/10.1039/c1cs15078b
12 https://doi.org/10.1039/c4nr00916a
13 https://doi.org/10.1088/0957-4484/22/4/045704
14 https://doi.org/10.1103/physrevlett.97.187401
15 https://doi.org/10.1116/1.2789446
16 https://doi.org/10.1126/science.1102896
17 https://doi.org/10.5012/bkcs.2012.33.1.209
18 schema:datePublished 2018
19 schema:datePublishedReg 2018-01-01
20 schema:description Graphene (Gr) has attracted tremendous attention for the synthesis of lightweight structural nanocomposites due to its excellent properties such as high Young’s modulus (1 TPa), high fracture strength (~125 GPa) and extreme thermal conductivity (~5000 W/m/K). Fabrication of pure aluminium–graphene nanocomposite is conducted using a chemical synthesis route followed by consolidation using spark plasma sintering process. The pure aluminium powder was initially cryomilled to refine the grain structure. Subsequently, nanocomposites of Al-reduced graphene (Al-Gr) were synthesized using a chemical method employing different proportions (by volume fraction) of graphene oxide (GO) dispersed in pure aluminium powder. The synthesized powder was ball milled under optimized conditions followed by spark plasma sintering. The powder and sintered Al-Gr nanocomposites are characterized by X-ray diffraction, Raman spectroscopy, SEM and TEM microscopy. The mechanical behaviour is evaluated using the indentation hardness method. GO was found fully converted to reduced graphene during SPS. The increased proportion of reduced graphene in aluminium powder has suggested improved mechanical properties such as hardness after SPS. The structure–property correlation of synthesized Al-Gr nanocomposites is discussed with regard to the improvement in the mechanical behaviour.
21 schema:editor N9cb94460b8f4485fa9aa9272a83791ca
22 schema:genre chapter
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N04de7b5859ba4a529efca85a4f4b4466
26 schema:name Synthesis of Aluminium–Graphene Nanocomposite Sintered Using Spark Plasma Sintering
27 schema:pagination 155-164
28 schema:productId N283571a937b149a992648c066b15abac
29 N466161c36ca7424790d9f031cb2cf10f
30 Na3a13d52e9d74220862236e2e632b20f
31 schema:publisher N988efcee5e51441486d91c295a0017d7
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092666208
33 https://doi.org/10.1007/978-981-10-4819-7_14
34 schema:sdDatePublished 2019-04-15T22:59
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N17b63d83dbc64ae29f1ade5721eec7f2
37 schema:url http://link.springer.com/10.1007/978-981-10-4819-7_14
38 sgo:license sg:explorer/license/
39 sgo:sdDataset chapters
40 rdf:type schema:Chapter
41 N04de7b5859ba4a529efca85a4f4b4466 schema:isbn 978-981-10-4818-0
42 978-981-10-4819-7
43 schema:name Frontiers in Materials Processing, Applications, Research and Technology
44 rdf:type schema:Book
45 N0b3e28bb159e4d169ec3557ff233041f rdf:first Nae26976591454e279e1cef0bd9b8c2db
46 rdf:rest Nb88b93b6956347c294f0a5d4a3ae9ff2
47 N0bedab757dae4fd6b8c82c94035f40ae schema:familyName Raj
48 schema:givenName Baldev
49 rdf:type schema:Person
50 N17b63d83dbc64ae29f1ade5721eec7f2 schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 N2247d1d035f246b481d164c2f66ef7b3 rdf:first N24de95b6099a4db890c993794f274421
53 rdf:rest N4e7ad9d66d3f4c168553c79d58c70b88
54 N24de95b6099a4db890c993794f274421 schema:familyName Chirazi
55 schema:givenName Ali
56 rdf:type schema:Person
57 N283571a937b149a992648c066b15abac schema:name readcube_id
58 schema:value 094f3accba99b375b94c06a927fbe6ac9470a467fc218074839b9e48830461d0
59 rdf:type schema:PropertyValue
60 N376808647b0c40da9c3cc3c2ae20f71b rdf:first sg:person.015536304664.43
61 rdf:rest N6d1d0eb00c774cdb9c345addeb698507
62 N466161c36ca7424790d9f031cb2cf10f schema:name dimensions_id
63 schema:value pub.1092666208
64 rdf:type schema:PropertyValue
65 N4d88dc838d984c8dba0cb8ad785b8b5a schema:name CSIR-National Physical Laboratory
66 rdf:type schema:Organization
67 N4e7ad9d66d3f4c168553c79d58c70b88 rdf:first N0bedab757dae4fd6b8c82c94035f40ae
68 rdf:rest rdf:nil
69 N506d56ec98a6448b8d0003e86d201366 schema:name CSIR-National Physical Laboratory
70 rdf:type schema:Organization
71 N50bcce8c092d4e8091ac21f5abcd7dae schema:name CSIR-National Physical Laboratory
72 rdf:type schema:Organization
73 N6d1d0eb00c774cdb9c345addeb698507 rdf:first sg:person.0621643545.89
74 rdf:rest rdf:nil
75 N96495b28b4134a7a99de3feea3bb14de schema:familyName Muruganant
76 schema:givenName M.
77 rdf:type schema:Person
78 N988efcee5e51441486d91c295a0017d7 schema:location Singapore
79 schema:name Springer Singapore
80 rdf:type schema:Organisation
81 N9cb94460b8f4485fa9aa9272a83791ca rdf:first N96495b28b4134a7a99de3feea3bb14de
82 rdf:rest N2247d1d035f246b481d164c2f66ef7b3
83 Na3a13d52e9d74220862236e2e632b20f schema:name doi
84 schema:value 10.1007/978-981-10-4819-7_14
85 rdf:type schema:PropertyValue
86 Nae26976591454e279e1cef0bd9b8c2db schema:affiliation N4d88dc838d984c8dba0cb8ad785b8b5a
87 schema:familyName Jain
88 schema:givenName Vipin
89 rdf:type schema:Person
90 Nb88b93b6956347c294f0a5d4a3ae9ff2 rdf:first sg:person.01105162563.46
91 rdf:rest N376808647b0c40da9c3cc3c2ae20f71b
92 Nfb85105c43444728b3786649f8100622 schema:name CSIR-National Physical Laboratory
93 rdf:type schema:Organization
94 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
95 schema:name Engineering
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
98 schema:name Materials Engineering
99 rdf:type schema:DefinedTerm
100 sg:person.01105162563.46 schema:affiliation N50bcce8c092d4e8091ac21f5abcd7dae
101 schema:familyName Kumar
102 schema:givenName Anil
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105162563.46
104 rdf:type schema:Person
105 sg:person.015536304664.43 schema:affiliation Nfb85105c43444728b3786649f8100622
106 schema:familyName Sivaiah
107 schema:givenName Bathula
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015536304664.43
109 rdf:type schema:Person
110 sg:person.0621643545.89 schema:affiliation N506d56ec98a6448b8d0003e86d201366
111 schema:familyName Dhar
112 schema:givenName Ajay
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621643545.89
114 rdf:type schema:Person
115 https://doi.org/10.1002/adfm.201201418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041279113
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1002/adma.201302495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009659468
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.carbon.2011.01.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003478288
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.scriptamat.2011.05.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040637741
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.scriptamat.2012.01.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046083241
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1021/nn1028967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056223079
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1039/c0sm00667j schema:sameAs https://app.dimensions.ai/details/publication/pub.1038130923
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1039/c1cs15078b schema:sameAs https://app.dimensions.ai/details/publication/pub.1018274097
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1039/c4nr00916a schema:sameAs https://app.dimensions.ai/details/publication/pub.1016310974
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1088/0957-4484/22/4/045704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008054395
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physrevlett.97.187401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001174697
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1116/1.2789446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020125170
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1126/science.1102896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019008412
140 rdf:type schema:CreativeWork
141 https://doi.org/10.5012/bkcs.2012.33.1.209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015481542
142 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...