Applying Classification Methods for Spectrum Sensing in Cognitive Radio Networks: An Empirical Study View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018

AUTHORS

Nayan Basumatary , Nityananda Sarma , Bhabesh Nath

ABSTRACT

Spectrum sensing is the paramount aspect of cognitive radio network where a secondary user is able to utilize the idle channels of the licensed spectrum band in an opportunistic manner without interfering the primary (license) users. The channel (band) is considered to be idle (free) when primary signal is absent. The channel accessibility (free) and non-accessibility (occupied) can be modeled as a classification problem where classification techniques can determine the status of the channel. In this work supervised learning techniques is employed for classification on the real-time spectrum sensing data collected in test bed. The power and signal-to-noise ratio (SNR) levels measured at the independent CR device in our test bed are treated as the features. The classifiers construct its learning model and give a channel decision to be free or occupied for unlabelled test instances. The different classification technique’s performances are evaluated in terms of average training time, classification time, and F1 measure. Our empirical study clearly reveals that supervised learning gives a high classification accuracy by detecting low-amplitude signal in a noisy environment. More... »

PAGES

85-92

References to SciGraph publications

Book

TITLE

Advances in Electronics, Communication and Computing

ISBN

978-981-10-4764-0
978-981-10-4765-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-981-10-4765-7_10

DOI

http://dx.doi.org/10.1007/978-981-10-4765-7_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092416113


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tezpur University", 
          "id": "https://www.grid.ac/institutes/grid.45982.32", 
          "name": [
            "Tezpur University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Basumatary", 
        "givenName": "Nayan", 
        "id": "sg:person.010370615216.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010370615216.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tezpur University", 
          "id": "https://www.grid.ac/institutes/grid.45982.32", 
          "name": [
            "Tezpur University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sarma", 
        "givenName": "Nityananda", 
        "id": "sg:person.010007662420.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010007662420.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tezpur University", 
          "id": "https://www.grid.ac/institutes/grid.45982.32", 
          "name": [
            "Tezpur University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nath", 
        "givenName": "Bhabesh", 
        "id": "sg:person.013356517216.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013356517216.81"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00994018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025150743", 
          "https://doi.org/10.1007/bf00994018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jsac.2004.839380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061316692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/proc.1967.5573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061439031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/surv.2012.100412.00017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061446815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/acssc.2004.1399240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095344674"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018", 
    "datePublishedReg": "2018-01-01", 
    "description": "Spectrum sensing is the paramount aspect of cognitive radio network where a secondary user is able to utilize the idle channels of the licensed spectrum band in an opportunistic manner without interfering the primary (license) users. The channel (band) is considered to be idle (free) when primary signal is absent. The channel accessibility (free) and non-accessibility (occupied) can be modeled as a classification problem where classification techniques can determine the status of the channel. In this work supervised learning techniques is employed for classification on the real-time spectrum sensing data collected in test bed. The power and signal-to-noise ratio (SNR) levels measured at the independent CR device in our test bed are treated as the features. The classifiers construct its learning model and give a channel decision to be free or occupied for unlabelled test instances. The different classification technique\u2019s performances are evaluated in terms of average training time, classification time, and F1 measure. Our empirical study clearly reveals that supervised learning gives a high classification accuracy by detecting low-amplitude signal in a noisy environment.", 
    "editor": [
      {
        "familyName": "Kalam", 
        "givenName": "Akhtar", 
        "type": "Person"
      }, 
      {
        "familyName": "Das", 
        "givenName": "Swagatam", 
        "type": "Person"
      }, 
      {
        "familyName": "Sharma", 
        "givenName": "Kalpana", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-981-10-4765-7_10", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-981-10-4764-0", 
        "978-981-10-4765-7"
      ], 
      "name": "Advances in Electronics, Communication and Computing", 
      "type": "Book"
    }, 
    "name": "Applying Classification Methods for Spectrum Sensing in Cognitive Radio Networks: An Empirical Study", 
    "pagination": "85-92", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-981-10-4765-7_10"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "10abab0d6aa87fcc15a062f2dd850137439ddb3cf88553d4384773b84b275120"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092416113"
        ]
      }
    ], 
    "publisher": {
      "location": "Singapore", 
      "name": "Springer Singapore", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-981-10-4765-7_10", 
      "https://app.dimensions.ai/details/publication/pub.1092416113"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T10:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000225.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-981-10-4765-7_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-4765-7_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-4765-7_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-4765-7_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-4765-7_10'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      23 PREDICATES      32 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-981-10-4765-7_10 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N9b4a272ad5844482b0d1b21376e983dd
4 schema:citation sg:pub.10.1007/bf00994018
5 https://doi.org/10.1109/acssc.2004.1399240
6 https://doi.org/10.1109/jsac.2004.839380
7 https://doi.org/10.1109/proc.1967.5573
8 https://doi.org/10.1109/surv.2012.100412.00017
9 schema:datePublished 2018
10 schema:datePublishedReg 2018-01-01
11 schema:description Spectrum sensing is the paramount aspect of cognitive radio network where a secondary user is able to utilize the idle channels of the licensed spectrum band in an opportunistic manner without interfering the primary (license) users. The channel (band) is considered to be idle (free) when primary signal is absent. The channel accessibility (free) and non-accessibility (occupied) can be modeled as a classification problem where classification techniques can determine the status of the channel. In this work supervised learning techniques is employed for classification on the real-time spectrum sensing data collected in test bed. The power and signal-to-noise ratio (SNR) levels measured at the independent CR device in our test bed are treated as the features. The classifiers construct its learning model and give a channel decision to be free or occupied for unlabelled test instances. The different classification technique’s performances are evaluated in terms of average training time, classification time, and F1 measure. Our empirical study clearly reveals that supervised learning gives a high classification accuracy by detecting low-amplitude signal in a noisy environment.
12 schema:editor N29972760bfc941b5954c388841b611ae
13 schema:genre chapter
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N1f94428b300344838f097bee85799cb5
17 schema:name Applying Classification Methods for Spectrum Sensing in Cognitive Radio Networks: An Empirical Study
18 schema:pagination 85-92
19 schema:productId N77f2afa4943d49a69b7b27693e2a8d28
20 N94045c90141640a5b875e88fa2a7a162
21 Ne57873b2814c491bba77f4b2cba86f2a
22 schema:publisher Nab15f557d5ce4331bedf8df129e74a3c
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092416113
24 https://doi.org/10.1007/978-981-10-4765-7_10
25 schema:sdDatePublished 2019-04-15T10:29
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N4a8329d750ee440abd22714a137e481a
28 schema:url http://link.springer.com/10.1007/978-981-10-4765-7_10
29 sgo:license sg:explorer/license/
30 sgo:sdDataset chapters
31 rdf:type schema:Chapter
32 N1f94428b300344838f097bee85799cb5 schema:isbn 978-981-10-4764-0
33 978-981-10-4765-7
34 schema:name Advances in Electronics, Communication and Computing
35 rdf:type schema:Book
36 N26f07bd77b7b4c25bbbfec8d2056cb4f rdf:first Nde8e6e9b8838447fb84732eb13c491e9
37 rdf:rest N83fba610bc6e432da8968246119e0db3
38 N29972760bfc941b5954c388841b611ae rdf:first Ndca74b643863432eb97822898d1985cf
39 rdf:rest N26f07bd77b7b4c25bbbfec8d2056cb4f
40 N4a8329d750ee440abd22714a137e481a schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 N77f2afa4943d49a69b7b27693e2a8d28 schema:name readcube_id
43 schema:value 10abab0d6aa87fcc15a062f2dd850137439ddb3cf88553d4384773b84b275120
44 rdf:type schema:PropertyValue
45 N83fba610bc6e432da8968246119e0db3 rdf:first Nd61c3daeeec04105a160683629dd32eb
46 rdf:rest rdf:nil
47 N94045c90141640a5b875e88fa2a7a162 schema:name doi
48 schema:value 10.1007/978-981-10-4765-7_10
49 rdf:type schema:PropertyValue
50 N9b4a272ad5844482b0d1b21376e983dd rdf:first sg:person.010370615216.10
51 rdf:rest Nc8cd31deea3a4d1db57378c97f9347d0
52 Nab15f557d5ce4331bedf8df129e74a3c schema:location Singapore
53 schema:name Springer Singapore
54 rdf:type schema:Organisation
55 Nc8cd31deea3a4d1db57378c97f9347d0 rdf:first sg:person.010007662420.89
56 rdf:rest Nd66cfdacc29b423bac6c8adca1b37898
57 Nd61c3daeeec04105a160683629dd32eb schema:familyName Sharma
58 schema:givenName Kalpana
59 rdf:type schema:Person
60 Nd66cfdacc29b423bac6c8adca1b37898 rdf:first sg:person.013356517216.81
61 rdf:rest rdf:nil
62 Ndca74b643863432eb97822898d1985cf schema:familyName Kalam
63 schema:givenName Akhtar
64 rdf:type schema:Person
65 Nde8e6e9b8838447fb84732eb13c491e9 schema:familyName Das
66 schema:givenName Swagatam
67 rdf:type schema:Person
68 Ne57873b2814c491bba77f4b2cba86f2a schema:name dimensions_id
69 schema:value pub.1092416113
70 rdf:type schema:PropertyValue
71 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
72 schema:name Information and Computing Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
75 schema:name Artificial Intelligence and Image Processing
76 rdf:type schema:DefinedTerm
77 sg:person.010007662420.89 schema:affiliation https://www.grid.ac/institutes/grid.45982.32
78 schema:familyName Sarma
79 schema:givenName Nityananda
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010007662420.89
81 rdf:type schema:Person
82 sg:person.010370615216.10 schema:affiliation https://www.grid.ac/institutes/grid.45982.32
83 schema:familyName Basumatary
84 schema:givenName Nayan
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010370615216.10
86 rdf:type schema:Person
87 sg:person.013356517216.81 schema:affiliation https://www.grid.ac/institutes/grid.45982.32
88 schema:familyName Nath
89 schema:givenName Bhabesh
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013356517216.81
91 rdf:type schema:Person
92 sg:pub.10.1007/bf00994018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025150743
93 https://doi.org/10.1007/bf00994018
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1109/acssc.2004.1399240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095344674
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1109/jsac.2004.839380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061316692
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1109/proc.1967.5573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061439031
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1109/surv.2012.100412.00017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061446815
102 rdf:type schema:CreativeWork
103 https://www.grid.ac/institutes/grid.45982.32 schema:alternateName Tezpur University
104 schema:name Tezpur University
105 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...