A Study of Representation Learning for Handwritten Numeral Recognition of Multilingual Data Set View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018

AUTHORS

Solley Thomas

ABSTRACT

Handwritten numeral recognition, a subset of handwritten character recognition is the ability to identify the numbers correctly by the machine from a given input image. Compared to the printed numeral recognition, handwritten numeral recognition is more complex due to variation in writing style and shape from person to person. The success in handwritten digit recognition can be attributed to advances in machine-learning techniques. In the field of machine learning, representation-based learning in deep learning context is gaining popularity in the recent years. Representative deep learning methods have successfully implemented in image classification, action recognition, object tracking, etc. The focus of this work is to study the use of representation learning for dimensionality reduction, in offline handwritten numeral recognition. An experimental study is carried out to compare the performance of the handwritten numerals recognition using SVM-based classifier on raw features as well as on learned features. Multilingual handwritten numeral data set of English and Devanagari numbers is used for the study. The representation learning method used in the experiment is restricted Boltzmann machine (RBM). More... »

PAGES

475-482

Book

TITLE

Information and Communication Technology for Sustainable Development

ISBN

978-981-10-3919-5
978-981-10-3920-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-981-10-3920-1_48

DOI

http://dx.doi.org/10.1007/978-981-10-3920-1_48

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092576646


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Carmel College of Arts Science & Commerce for Women"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thomas", 
        "givenName": "Solley", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1273496.1273556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002982013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1127647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004607132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5120/1293-1769", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072595350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isda.2006.61", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095645701"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018", 
    "datePublishedReg": "2018-01-01", 
    "description": "Handwritten numeral recognition, a subset of handwritten character recognition is the ability to identify the numbers correctly by the machine from a given input image. Compared to the printed numeral recognition, handwritten numeral recognition is more complex due to variation in writing style and shape from person to person. The success in handwritten digit recognition can be attributed to advances in machine-learning techniques. In the field of machine learning, representation-based learning in deep learning context is gaining popularity in the recent years. Representative deep learning methods have successfully implemented in image classification, action recognition, object tracking, etc. The focus of this work is to study the use of representation learning for dimensionality reduction, in offline handwritten numeral recognition. An experimental study is carried out to compare the performance of the handwritten numerals recognition using SVM-based classifier on raw features as well as on learned features. Multilingual handwritten numeral data set of English and Devanagari numbers is used for the study. The representation learning method used in the experiment is restricted Boltzmann machine (RBM).", 
    "editor": [
      {
        "familyName": "Mishra", 
        "givenName": "Durgesh Kumar", 
        "type": "Person"
      }, 
      {
        "familyName": "Nayak", 
        "givenName": "Malaya Kumar", 
        "type": "Person"
      }, 
      {
        "familyName": "Joshi", 
        "givenName": "Amit", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-981-10-3920-1_48", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-981-10-3919-5", 
        "978-981-10-3920-1"
      ], 
      "name": "Information and Communication Technology for Sustainable Development", 
      "type": "Book"
    }, 
    "name": "A Study of Representation Learning for Handwritten Numeral Recognition of Multilingual Data Set", 
    "pagination": "475-482", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-981-10-3920-1_48"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e11f780201026819ca20a79970815558c56d081529494281c8da4bd4a7314d78"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092576646"
        ]
      }
    ], 
    "publisher": {
      "location": "Singapore", 
      "name": "Springer Singapore", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-981-10-3920-1_48", 
      "https://app.dimensions.ai/details/publication/pub.1092576646"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T14:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000226.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-981-10-3920-1_48"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-3920-1_48'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-3920-1_48'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-3920-1_48'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-3920-1_48'


 

This table displays all metadata directly associated to this object as RDF triples.

85 TRIPLES      23 PREDICATES      31 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-981-10-3920-1_48 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N666f95e509a8471db5b31cb0e1a0f3a4
4 schema:citation https://doi.org/10.1109/isda.2006.61
5 https://doi.org/10.1126/science.1127647
6 https://doi.org/10.1145/1273496.1273556
7 https://doi.org/10.5120/1293-1769
8 schema:datePublished 2018
9 schema:datePublishedReg 2018-01-01
10 schema:description Handwritten numeral recognition, a subset of handwritten character recognition is the ability to identify the numbers correctly by the machine from a given input image. Compared to the printed numeral recognition, handwritten numeral recognition is more complex due to variation in writing style and shape from person to person. The success in handwritten digit recognition can be attributed to advances in machine-learning techniques. In the field of machine learning, representation-based learning in deep learning context is gaining popularity in the recent years. Representative deep learning methods have successfully implemented in image classification, action recognition, object tracking, etc. The focus of this work is to study the use of representation learning for dimensionality reduction, in offline handwritten numeral recognition. An experimental study is carried out to compare the performance of the handwritten numerals recognition using SVM-based classifier on raw features as well as on learned features. Multilingual handwritten numeral data set of English and Devanagari numbers is used for the study. The representation learning method used in the experiment is restricted Boltzmann machine (RBM).
11 schema:editor Na163e7f62b9e431f8840e179c000f96e
12 schema:genre chapter
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N88636ec834864378abf5dbb4dcae60ba
16 schema:name A Study of Representation Learning for Handwritten Numeral Recognition of Multilingual Data Set
17 schema:pagination 475-482
18 schema:productId N17ef3ec7528a46e4909198e3c2e4ca46
19 N54f91ed46a9a4679b81ef3232f3d8e06
20 Nfbaa5fadb8d54407ba858c3246fac72d
21 schema:publisher N4aeb1adbf7e849ffa4c65f45c4701ffc
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092576646
23 https://doi.org/10.1007/978-981-10-3920-1_48
24 schema:sdDatePublished 2019-04-15T14:21
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N1e9f0d0ec3b04f77ac4095e78ec8f101
27 schema:url http://link.springer.com/10.1007/978-981-10-3920-1_48
28 sgo:license sg:explorer/license/
29 sgo:sdDataset chapters
30 rdf:type schema:Chapter
31 N17ef3ec7528a46e4909198e3c2e4ca46 schema:name dimensions_id
32 schema:value pub.1092576646
33 rdf:type schema:PropertyValue
34 N1e9f0d0ec3b04f77ac4095e78ec8f101 schema:name Springer Nature - SN SciGraph project
35 rdf:type schema:Organization
36 N215ff0e8357243d6a5c661d4e8502f35 schema:affiliation N4e6ed6fc154c47b0b3043070a3072fbe
37 schema:familyName Thomas
38 schema:givenName Solley
39 rdf:type schema:Person
40 N398083e79e01497eba1a218f1c1b7254 schema:familyName Nayak
41 schema:givenName Malaya Kumar
42 rdf:type schema:Person
43 N436644715c4c48c295517925508c4dce rdf:first N398083e79e01497eba1a218f1c1b7254
44 rdf:rest Nd5ec83b037bc40609d1fed1dc9e6a18e
45 N47451bcd80fa490eb866a77c24cba66d schema:familyName Mishra
46 schema:givenName Durgesh Kumar
47 rdf:type schema:Person
48 N4aeb1adbf7e849ffa4c65f45c4701ffc schema:location Singapore
49 schema:name Springer Singapore
50 rdf:type schema:Organisation
51 N4e6ed6fc154c47b0b3043070a3072fbe schema:name Carmel College of Arts Science & Commerce for Women
52 rdf:type schema:Organization
53 N54f91ed46a9a4679b81ef3232f3d8e06 schema:name readcube_id
54 schema:value e11f780201026819ca20a79970815558c56d081529494281c8da4bd4a7314d78
55 rdf:type schema:PropertyValue
56 N666f95e509a8471db5b31cb0e1a0f3a4 rdf:first N215ff0e8357243d6a5c661d4e8502f35
57 rdf:rest rdf:nil
58 N88636ec834864378abf5dbb4dcae60ba schema:isbn 978-981-10-3919-5
59 978-981-10-3920-1
60 schema:name Information and Communication Technology for Sustainable Development
61 rdf:type schema:Book
62 N96505bcfe97141d59e9b7c0a937156f2 schema:familyName Joshi
63 schema:givenName Amit
64 rdf:type schema:Person
65 Na163e7f62b9e431f8840e179c000f96e rdf:first N47451bcd80fa490eb866a77c24cba66d
66 rdf:rest N436644715c4c48c295517925508c4dce
67 Nd5ec83b037bc40609d1fed1dc9e6a18e rdf:first N96505bcfe97141d59e9b7c0a937156f2
68 rdf:rest rdf:nil
69 Nfbaa5fadb8d54407ba858c3246fac72d schema:name doi
70 schema:value 10.1007/978-981-10-3920-1_48
71 rdf:type schema:PropertyValue
72 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
73 schema:name Information and Computing Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
76 schema:name Artificial Intelligence and Image Processing
77 rdf:type schema:DefinedTerm
78 https://doi.org/10.1109/isda.2006.61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095645701
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1126/science.1127647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004607132
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1145/1273496.1273556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002982013
83 rdf:type schema:CreativeWork
84 https://doi.org/10.5120/1293-1769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072595350
85 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...