Shock Waves View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017-12-06

AUTHORS

Stefano Trillo , Matteo Conforti

ABSTRACT

We discuss the physics of shock waves with special emphasis on the phenomena related to the field of nonlinear fiber optics. We first introduce the general mechanism commonly known as gradient catastrophe and the related concept of classical shock waves. Then we proceed to discuss the possible regularization mechanisms of the shock, and in particular the dispersive regularization, which is behind the formation of dispersive shock waves in fibers. We then discuss different possible scenarios that lead to observe the formation of dispersive shock waves in fibers, such as pulse propagation, four-wave mixing, and passive resonators, also showing that fibers allow for investigating the dispersive regime of classical problems related to the physics of shock such as the dam-break problem and the propagation of Riemann waves. We also discuss the phase-matching mechanism that induces the shock to efficiently radiate resonant radiation in the normal dispersion regime. Throughout the text we refer to the mathematical models and the approaches that are employed to describe such phenomena. More... »

PAGES

1-48

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-981-10-1477-2_16-1

DOI

http://dx.doi.org/10.1007/978-981-10-1477-2_16-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100190818


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Engineering, University of Ferrara, Ferrara, Italy", 
          "id": "http://www.grid.ac/institutes/grid.8484.0", 
          "name": [
            "Department of Engineering, University of Ferrara, Ferrara, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Trillo", 
        "givenName": "Stefano", 
        "id": "sg:person.01242414260.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242414260.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CNRS, UMR 8523, PhLAM \u2013 Physique des Lasers Atomes et Mol\u00e9cules, University of Lille, Lille, France", 
          "id": "http://www.grid.ac/institutes/grid.503422.2", 
          "name": [
            "CNRS, UMR 8523, PhLAM \u2013 Physique des Lasers Atomes et Mol\u00e9cules, University of Lille, Lille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Conforti", 
        "givenName": "Matteo", 
        "id": "sg:person.0764653251.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764653251.31"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-12-06", 
    "datePublishedReg": "2017-12-06", 
    "description": "We discuss the physics of shock waves with special emphasis on the phenomena related to the field of nonlinear fiber optics. We first introduce the general mechanism commonly known as gradient catastrophe and the related concept of classical shock waves. Then we proceed to discuss the possible regularization mechanisms of the shock, and in particular the dispersive regularization, which is behind the formation of dispersive shock waves in fibers. We then discuss different possible scenarios that lead to observe the formation of dispersive shock waves in fibers, such as pulse propagation, four-wave mixing, and passive resonators, also showing that fibers allow for investigating the dispersive regime of classical problems related to the physics of shock such as the dam-break problem and the propagation of Riemann waves. We also discuss the phase-matching mechanism that induces the shock to efficiently radiate resonant radiation in the normal dispersion regime. Throughout the text we refer to the mathematical models and the approaches that are employed to describe such phenomena.", 
    "editor": [
      {
        "familyName": "Peng", 
        "givenName": "Gang-Ding", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-981-10-1477-2_16-1", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-981-10-1477-2", 
        "978-981-10-1477-2"
      ], 
      "name": "Handbook of Optical Fibers", 
      "type": "Book"
    }, 
    "keywords": [
      "dispersive shock waves", 
      "shock waves", 
      "phase-matching mechanism", 
      "physics of shocks", 
      "normal dispersion regime", 
      "nonlinear fiber optics", 
      "four-wave mixing", 
      "classical shock waves", 
      "dam-break problem", 
      "resonant radiation", 
      "dispersion regime", 
      "dispersive regime", 
      "gradient catastrophe", 
      "pulse propagation", 
      "Riemann waves", 
      "dispersive regularization", 
      "fiber optics", 
      "mathematical model", 
      "passive resonator", 
      "classical problem", 
      "regularization mechanism", 
      "physics", 
      "waves", 
      "different possible scenarios", 
      "optics", 
      "such phenomena", 
      "propagation", 
      "regime", 
      "possible scenarios", 
      "resonator", 
      "problem", 
      "radiation", 
      "regularization", 
      "fibers", 
      "phenomenon", 
      "special emphasis", 
      "mixing", 
      "field", 
      "shock", 
      "formation", 
      "related concepts", 
      "model", 
      "approach", 
      "mechanism", 
      "scenarios", 
      "general mechanism", 
      "catastrophe", 
      "concept", 
      "emphasis", 
      "text"
    ], 
    "name": "Shock Waves", 
    "pagination": "1-48", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100190818"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-981-10-1477-2_16-1"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-981-10-1477-2_16-1", 
      "https://app.dimensions.ai/details/publication/pub.1100190818"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_409.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-981-10-1477-2_16-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-1477-2_16-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-1477-2_16-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-1477-2_16-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-1477-2_16-1'


 

This table displays all metadata directly associated to this object as RDF triples.

118 TRIPLES      22 PREDICATES      74 URIs      67 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-981-10-1477-2_16-1 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N474ee2084b184ef5977843294e0dc314
4 schema:datePublished 2017-12-06
5 schema:datePublishedReg 2017-12-06
6 schema:description We discuss the physics of shock waves with special emphasis on the phenomena related to the field of nonlinear fiber optics. We first introduce the general mechanism commonly known as gradient catastrophe and the related concept of classical shock waves. Then we proceed to discuss the possible regularization mechanisms of the shock, and in particular the dispersive regularization, which is behind the formation of dispersive shock waves in fibers. We then discuss different possible scenarios that lead to observe the formation of dispersive shock waves in fibers, such as pulse propagation, four-wave mixing, and passive resonators, also showing that fibers allow for investigating the dispersive regime of classical problems related to the physics of shock such as the dam-break problem and the propagation of Riemann waves. We also discuss the phase-matching mechanism that induces the shock to efficiently radiate resonant radiation in the normal dispersion regime. Throughout the text we refer to the mathematical models and the approaches that are employed to describe such phenomena.
7 schema:editor N4de412d6654e45679994766049b0cbb4
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Nb36182828d7d45b38110e4385bcab96a
11 schema:keywords Riemann waves
12 approach
13 catastrophe
14 classical problem
15 classical shock waves
16 concept
17 dam-break problem
18 different possible scenarios
19 dispersion regime
20 dispersive regime
21 dispersive regularization
22 dispersive shock waves
23 emphasis
24 fiber optics
25 fibers
26 field
27 formation
28 four-wave mixing
29 general mechanism
30 gradient catastrophe
31 mathematical model
32 mechanism
33 mixing
34 model
35 nonlinear fiber optics
36 normal dispersion regime
37 optics
38 passive resonator
39 phase-matching mechanism
40 phenomenon
41 physics
42 physics of shocks
43 possible scenarios
44 problem
45 propagation
46 pulse propagation
47 radiation
48 regime
49 regularization
50 regularization mechanism
51 related concepts
52 resonant radiation
53 resonator
54 scenarios
55 shock
56 shock waves
57 special emphasis
58 such phenomena
59 text
60 waves
61 schema:name Shock Waves
62 schema:pagination 1-48
63 schema:productId N003ce84e0dbf4d289f2109c9735a9227
64 N3d5fb0b350dc4a08a1a79097f2bf0eb2
65 schema:publisher Nc7414df1d58b42bf8b1ab3a448518241
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100190818
67 https://doi.org/10.1007/978-981-10-1477-2_16-1
68 schema:sdDatePublished 2022-12-01T06:53
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher Neb561379872d4e7793acb071de64b437
71 schema:url https://doi.org/10.1007/978-981-10-1477-2_16-1
72 sgo:license sg:explorer/license/
73 sgo:sdDataset chapters
74 rdf:type schema:Chapter
75 N003ce84e0dbf4d289f2109c9735a9227 schema:name dimensions_id
76 schema:value pub.1100190818
77 rdf:type schema:PropertyValue
78 N0e1fe48d588744b0abbf738b61714b42 schema:familyName Peng
79 schema:givenName Gang-Ding
80 rdf:type schema:Person
81 N3d5fb0b350dc4a08a1a79097f2bf0eb2 schema:name doi
82 schema:value 10.1007/978-981-10-1477-2_16-1
83 rdf:type schema:PropertyValue
84 N474ee2084b184ef5977843294e0dc314 rdf:first sg:person.01242414260.33
85 rdf:rest N6eb76fdf05e646ce8ab496df7e002334
86 N4de412d6654e45679994766049b0cbb4 rdf:first N0e1fe48d588744b0abbf738b61714b42
87 rdf:rest rdf:nil
88 N6eb76fdf05e646ce8ab496df7e002334 rdf:first sg:person.0764653251.31
89 rdf:rest rdf:nil
90 Nb36182828d7d45b38110e4385bcab96a schema:isbn 978-981-10-1477-2
91 schema:name Handbook of Optical Fibers
92 rdf:type schema:Book
93 Nc7414df1d58b42bf8b1ab3a448518241 schema:name Springer Nature
94 rdf:type schema:Organisation
95 Neb561379872d4e7793acb071de64b437 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
98 schema:name Physical Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
101 schema:name Other Physical Sciences
102 rdf:type schema:DefinedTerm
103 sg:person.01242414260.33 schema:affiliation grid-institutes:grid.8484.0
104 schema:familyName Trillo
105 schema:givenName Stefano
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242414260.33
107 rdf:type schema:Person
108 sg:person.0764653251.31 schema:affiliation grid-institutes:grid.503422.2
109 schema:familyName Conforti
110 schema:givenName Matteo
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764653251.31
112 rdf:type schema:Person
113 grid-institutes:grid.503422.2 schema:alternateName CNRS, UMR 8523, PhLAM – Physique des Lasers Atomes et Molécules, University of Lille, Lille, France
114 schema:name CNRS, UMR 8523, PhLAM – Physique des Lasers Atomes et Molécules, University of Lille, Lille, France
115 rdf:type schema:Organization
116 grid-institutes:grid.8484.0 schema:alternateName Department of Engineering, University of Ferrara, Ferrara, Italy
117 schema:name Department of Engineering, University of Ferrara, Ferrara, Italy
118 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...