Atomistic Modeling and Simulation for Solving Gas Extraction Problems View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

Genri E. Norman , Vasily V. Pisarev , Grigory S. Smirnov , Vladimir V. Stegailov

ABSTRACT

Proof-of-concept results are presented on the application of molecular modeling and simulation to the gas extraction problems. Both hydrocarbon mixtures and gas hydrates in porous media are considered. Retrograde gas condensation reduces the amount of recoverable gas in reservoirs and can lead to jamming of wells. For example, the authors [1] developed a model of two-phase gas filtration through porous media that can reproduce the jamming. The model can describe gas flow in soil of reservoir if both a phase diagram of the gas mixture and permeability of pores to gaseous and liquid phases are known. Molecular dynamics simulations are used to study phase diagrams of binary hydrocarbon mixtures at temperatures between the critical points of pure components. The phase diagrams in free space and in slit pores are calculated. Effects of wall–gas interaction on the phase diagram are estimated. The data obtained from molecular simulations can be used to improve the hydrodynamic filtration model and to optimize the natural gas and gas condensate extraction conditions. Effects of pore structure on the phase stability of gas hydrates and on the diffusion of guest molecules are studied by means of molecular modeling. The anisotropic diffusion is found in hydrogen hydrates. Moreover, diffusivity of hydrogen molecules demonstrates anomalous behavior on nanosecond timescale. More... »

PAGES

137-151

References to SciGraph publications

Book

TITLE

Foundations of Molecular Modeling and Simulation

ISBN

978-981-10-1126-9
978-981-10-1128-3

From Grant

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-981-10-1128-3_9

DOI

http://dx.doi.org/10.1007/978-981-10-1128-3_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011908783


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0914", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Resources Engineering and Extractive Metallurgy", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Joint Institute for High Temperatures of RAS"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Norman", 
        "givenName": "Genri E.", 
        "id": "sg:person.011273064305.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011273064305.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Joint Institute for High Temperatures of RAS"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pisarev", 
        "givenName": "Vasily V.", 
        "id": "sg:person.016615115425.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016615115425.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Institute of Physics and Technology", 
          "id": "https://www.grid.ac/institutes/grid.18763.3b", 
          "name": [
            "Joint Institute for High Temperatures of RAS", 
            "Moscow Institute of Physics and Technology (State University)"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smirnov", 
        "givenName": "Grigory S.", 
        "id": "sg:person.01176201755.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176201755.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Joint Institute for High Temperatures of RAS"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stegailov", 
        "givenName": "Vladimir V.", 
        "id": "sg:person.013675326625.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013675326625.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2014.09.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000929617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0009-2509(94)e0078-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016127480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1028335814110044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017117953", 
          "https://doi.org/10.1134/s1028335814110044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4935197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017315308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.23429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017673164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ctpp.200910049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018327589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ctpp.200910049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018327589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.23872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024563686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0018151x09050083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027803197", 
          "https://doi.org/10.1134/s0018151x09050083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00268978800100743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028105515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00268978700101491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029633599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s2070048213040108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031145926", 
          "https://doi.org/10.1134/s2070048213040108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcph.1995.1039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034822855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cplett.2010.03.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037335533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/08927022.2011.633256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041039597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.200700250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043315366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie504008h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043477056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cpc.2010.12.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045660018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0018151x10060167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050069906", 
          "https://doi.org/10.1134/s0018151x10060167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ces.2014.09.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051343410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ces.2014.09.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051343410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ces.2014.09.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051343410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ces.2014.09.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051343410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ces.2014.09.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051343410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp972543+", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051395238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp972543+", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051395238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie50368a014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055625517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100308a038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055663903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00124a002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055708364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/je60060a014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055887297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/je60060a015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055887298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp071006e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056070903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp071006e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056070903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp102874s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056076608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp102874s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056076608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp2003485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056081636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp2003485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056081636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp911032q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056119150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp911032q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056119150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp990822m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056130329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp990822m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056130329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jz401669d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056135264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1931662", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057832937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2121687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057838121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2335450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057849877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3466751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057956669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3677188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057998420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3679860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057999339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.463137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058041148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.468303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058046301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4793468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058070119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.881812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058127299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.31.1695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060473124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.31.1695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060473124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.134103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060609221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.134103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060609221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1260/1750-9548.5.2.145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064585187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511816581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098742549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1101840821", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/3527608052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101840821"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016", 
    "datePublishedReg": "2016-01-01", 
    "description": "Proof-of-concept results are presented on the application of molecular modeling and simulation to the gas extraction problems. Both hydrocarbon mixtures and gas hydrates in porous media are considered. Retrograde gas condensation reduces the amount of recoverable gas in reservoirs and can lead to jamming of wells. For example, the authors [1] developed a model of two-phase gas filtration through porous media that can reproduce the jamming. The model can describe gas flow in soil of reservoir if both a phase diagram of the gas mixture and permeability of pores to gaseous and liquid phases are known. Molecular dynamics simulations are used to study phase diagrams of binary hydrocarbon mixtures at temperatures between the critical points of pure components. The phase diagrams in free space and in slit pores are calculated. Effects of wall\u2013gas interaction on the phase diagram are estimated. The data obtained from molecular simulations can be used to improve the hydrodynamic filtration model and to optimize the natural gas and gas condensate extraction conditions. Effects of pore structure on the phase stability of gas hydrates and on the diffusion of guest molecules are studied by means of molecular modeling. The anisotropic diffusion is found in hydrogen hydrates. Moreover, diffusivity of hydrogen molecules demonstrates anomalous behavior on nanosecond timescale.", 
    "editor": [
      {
        "familyName": "Snurr", 
        "givenName": "Randall Q", 
        "type": "Person"
      }, 
      {
        "familyName": "Adjiman", 
        "givenName": "Claire S.", 
        "type": "Person"
      }, 
      {
        "familyName": "Kofke", 
        "givenName": "David A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-981-10-1128-3_9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4896888", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "978-981-10-1126-9", 
        "978-981-10-1128-3"
      ], 
      "name": "Foundations of Molecular Modeling and Simulation", 
      "type": "Book"
    }, 
    "name": "Atomistic Modeling and Simulation for Solving Gas Extraction Problems", 
    "pagination": "137-151", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-981-10-1128-3_9"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "38bd5cadc20a5dfe58c977ae721b73f0ecf09e97c24d1a195e75d8aafa208057"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011908783"
        ]
      }
    ], 
    "publisher": {
      "location": "Singapore", 
      "name": "Springer Singapore", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-981-10-1128-3_9", 
      "https://app.dimensions.ai/details/publication/pub.1011908783"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T21:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000582.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-981-10-1128-3_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-1128-3_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-1128-3_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-1128-3_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-1128-3_9'


 

This table displays all metadata directly associated to this object as RDF triples.

249 TRIPLES      23 PREDICATES      74 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-981-10-1128-3_9 schema:about anzsrc-for:09
2 anzsrc-for:0914
3 schema:author N8861d87007e0488bb39ab94625067b63
4 schema:citation sg:pub.10.1134/s0018151x09050083
5 sg:pub.10.1134/s0018151x10060167
6 sg:pub.10.1134/s1028335814110044
7 sg:pub.10.1134/s2070048213040108
8 https://app.dimensions.ai/details/publication/pub.1101840821
9 https://doi.org/10.1002/3527608052
10 https://doi.org/10.1002/anie.200700250
11 https://doi.org/10.1002/ctpp.200910049
12 https://doi.org/10.1002/jcc.23429
13 https://doi.org/10.1002/jcc.23872
14 https://doi.org/10.1006/jcph.1995.1039
15 https://doi.org/10.1016/0009-2509(94)e0078-5
16 https://doi.org/10.1016/j.ces.2014.09.031
17 https://doi.org/10.1016/j.cpc.2010.12.026
18 https://doi.org/10.1016/j.cplett.2010.03.048
19 https://doi.org/10.1016/j.ijhydene.2014.09.069
20 https://doi.org/10.1017/cbo9780511816581
21 https://doi.org/10.1021/ie50368a014
22 https://doi.org/10.1021/ie504008h
23 https://doi.org/10.1021/j100308a038
24 https://doi.org/10.1021/ja00124a002
25 https://doi.org/10.1021/je60060a014
26 https://doi.org/10.1021/je60060a015
27 https://doi.org/10.1021/jp071006e
28 https://doi.org/10.1021/jp102874s
29 https://doi.org/10.1021/jp2003485
30 https://doi.org/10.1021/jp911032q
31 https://doi.org/10.1021/jp972543+
32 https://doi.org/10.1021/jp990822m
33 https://doi.org/10.1021/jz401669d
34 https://doi.org/10.1063/1.1931662
35 https://doi.org/10.1063/1.2121687
36 https://doi.org/10.1063/1.2335450
37 https://doi.org/10.1063/1.3466751
38 https://doi.org/10.1063/1.3677188
39 https://doi.org/10.1063/1.3679860
40 https://doi.org/10.1063/1.463137
41 https://doi.org/10.1063/1.468303
42 https://doi.org/10.1063/1.4793468
43 https://doi.org/10.1063/1.4935197
44 https://doi.org/10.1063/1.881812
45 https://doi.org/10.1080/00268978700101491
46 https://doi.org/10.1080/00268978800100743
47 https://doi.org/10.1080/08927022.2011.633256
48 https://doi.org/10.1103/physreva.31.1695
49 https://doi.org/10.1103/physrevb.69.134103
50 https://doi.org/10.1260/1750-9548.5.2.145
51 schema:datePublished 2016
52 schema:datePublishedReg 2016-01-01
53 schema:description Proof-of-concept results are presented on the application of molecular modeling and simulation to the gas extraction problems. Both hydrocarbon mixtures and gas hydrates in porous media are considered. Retrograde gas condensation reduces the amount of recoverable gas in reservoirs and can lead to jamming of wells. For example, the authors [1] developed a model of two-phase gas filtration through porous media that can reproduce the jamming. The model can describe gas flow in soil of reservoir if both a phase diagram of the gas mixture and permeability of pores to gaseous and liquid phases are known. Molecular dynamics simulations are used to study phase diagrams of binary hydrocarbon mixtures at temperatures between the critical points of pure components. The phase diagrams in free space and in slit pores are calculated. Effects of wall–gas interaction on the phase diagram are estimated. The data obtained from molecular simulations can be used to improve the hydrodynamic filtration model and to optimize the natural gas and gas condensate extraction conditions. Effects of pore structure on the phase stability of gas hydrates and on the diffusion of guest molecules are studied by means of molecular modeling. The anisotropic diffusion is found in hydrogen hydrates. Moreover, diffusivity of hydrogen molecules demonstrates anomalous behavior on nanosecond timescale.
54 schema:editor N43d3a9cfdcfd40b38624872a54f7d8e9
55 schema:genre chapter
56 schema:inLanguage en
57 schema:isAccessibleForFree false
58 schema:isPartOf N43c3f57b568c4818a5a148c52b998c0c
59 schema:name Atomistic Modeling and Simulation for Solving Gas Extraction Problems
60 schema:pagination 137-151
61 schema:productId N3b898fe3261d44ea8f1b72548b7eafa8
62 N494de020b4ce4a1fb6d1de6ab9d27713
63 N86fc0b30b02b4821ab73ad91985f24e7
64 schema:publisher Ne1a1660b0be145f9ae78d7bfe43df0aa
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011908783
66 https://doi.org/10.1007/978-981-10-1128-3_9
67 schema:sdDatePublished 2019-04-15T21:38
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher Nf30a5972b0674b6b956e4aa6dcc9f2aa
70 schema:url http://link.springer.com/10.1007/978-981-10-1128-3_9
71 sgo:license sg:explorer/license/
72 sgo:sdDataset chapters
73 rdf:type schema:Chapter
74 N0f7f0c34e00c4fe2a218e00a9b57e836 schema:familyName Snurr
75 schema:givenName Randall Q
76 rdf:type schema:Person
77 N3b898fe3261d44ea8f1b72548b7eafa8 schema:name readcube_id
78 schema:value 38bd5cadc20a5dfe58c977ae721b73f0ecf09e97c24d1a195e75d8aafa208057
79 rdf:type schema:PropertyValue
80 N43c3f57b568c4818a5a148c52b998c0c schema:isbn 978-981-10-1126-9
81 978-981-10-1128-3
82 schema:name Foundations of Molecular Modeling and Simulation
83 rdf:type schema:Book
84 N43d3a9cfdcfd40b38624872a54f7d8e9 rdf:first N0f7f0c34e00c4fe2a218e00a9b57e836
85 rdf:rest N497f7fb6636a4ea8802c2ff9fa82bbcb
86 N494de020b4ce4a1fb6d1de6ab9d27713 schema:name dimensions_id
87 schema:value pub.1011908783
88 rdf:type schema:PropertyValue
89 N497f7fb6636a4ea8802c2ff9fa82bbcb rdf:first N5c30c15453704029af08b65915857f87
90 rdf:rest Ncc3df83aa55448678cac213afa688d7c
91 N5245070bd95647208298c8c95e832782 schema:name Joint Institute for High Temperatures of RAS
92 rdf:type schema:Organization
93 N5c30c15453704029af08b65915857f87 schema:familyName Adjiman
94 schema:givenName Claire S.
95 rdf:type schema:Person
96 N6fc2cf21e07e4076a58b0d18bec25e3d schema:name Joint Institute for High Temperatures of RAS
97 rdf:type schema:Organization
98 N86fc0b30b02b4821ab73ad91985f24e7 schema:name doi
99 schema:value 10.1007/978-981-10-1128-3_9
100 rdf:type schema:PropertyValue
101 N8861d87007e0488bb39ab94625067b63 rdf:first sg:person.011273064305.85
102 rdf:rest Nd98dcb8cacab4cc0a3a50c03a7bef7ae
103 N9198ac49199d4781bc336d8977d608b2 schema:familyName Kofke
104 schema:givenName David A.
105 rdf:type schema:Person
106 Na70b70720479422f81ac8799f104f077 rdf:first sg:person.01176201755.87
107 rdf:rest Nf0d0257bf4174282a75c49e7d993247e
108 Ncc3df83aa55448678cac213afa688d7c rdf:first N9198ac49199d4781bc336d8977d608b2
109 rdf:rest rdf:nil
110 Nd98dcb8cacab4cc0a3a50c03a7bef7ae rdf:first sg:person.016615115425.14
111 rdf:rest Na70b70720479422f81ac8799f104f077
112 Nde3fb9b32635462985de245a66051d6d schema:name Joint Institute for High Temperatures of RAS
113 rdf:type schema:Organization
114 Ne1a1660b0be145f9ae78d7bfe43df0aa schema:location Singapore
115 schema:name Springer Singapore
116 rdf:type schema:Organisation
117 Nf0d0257bf4174282a75c49e7d993247e rdf:first sg:person.013675326625.36
118 rdf:rest rdf:nil
119 Nf30a5972b0674b6b956e4aa6dcc9f2aa schema:name Springer Nature - SN SciGraph project
120 rdf:type schema:Organization
121 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
122 schema:name Engineering
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0914 schema:inDefinedTermSet anzsrc-for:
125 schema:name Resources Engineering and Extractive Metallurgy
126 rdf:type schema:DefinedTerm
127 sg:grant.4896888 http://pending.schema.org/fundedItem sg:pub.10.1007/978-981-10-1128-3_9
128 rdf:type schema:MonetaryGrant
129 sg:person.011273064305.85 schema:affiliation Nde3fb9b32635462985de245a66051d6d
130 schema:familyName Norman
131 schema:givenName Genri E.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011273064305.85
133 rdf:type schema:Person
134 sg:person.01176201755.87 schema:affiliation https://www.grid.ac/institutes/grid.18763.3b
135 schema:familyName Smirnov
136 schema:givenName Grigory S.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176201755.87
138 rdf:type schema:Person
139 sg:person.013675326625.36 schema:affiliation N5245070bd95647208298c8c95e832782
140 schema:familyName Stegailov
141 schema:givenName Vladimir V.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013675326625.36
143 rdf:type schema:Person
144 sg:person.016615115425.14 schema:affiliation N6fc2cf21e07e4076a58b0d18bec25e3d
145 schema:familyName Pisarev
146 schema:givenName Vasily V.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016615115425.14
148 rdf:type schema:Person
149 sg:pub.10.1134/s0018151x09050083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027803197
150 https://doi.org/10.1134/s0018151x09050083
151 rdf:type schema:CreativeWork
152 sg:pub.10.1134/s0018151x10060167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050069906
153 https://doi.org/10.1134/s0018151x10060167
154 rdf:type schema:CreativeWork
155 sg:pub.10.1134/s1028335814110044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017117953
156 https://doi.org/10.1134/s1028335814110044
157 rdf:type schema:CreativeWork
158 sg:pub.10.1134/s2070048213040108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031145926
159 https://doi.org/10.1134/s2070048213040108
160 rdf:type schema:CreativeWork
161 https://app.dimensions.ai/details/publication/pub.1101840821 schema:CreativeWork
162 https://doi.org/10.1002/3527608052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101840821
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1002/anie.200700250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043315366
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1002/ctpp.200910049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018327589
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1002/jcc.23429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017673164
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1002/jcc.23872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024563686
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1006/jcph.1995.1039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034822855
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/0009-2509(94)e0078-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016127480
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.ces.2014.09.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051343410
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.cpc.2010.12.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045660018
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.cplett.2010.03.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037335533
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.ijhydene.2014.09.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000929617
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1017/cbo9780511816581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098742549
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1021/ie50368a014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055625517
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1021/ie504008h schema:sameAs https://app.dimensions.ai/details/publication/pub.1043477056
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1021/j100308a038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055663903
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1021/ja00124a002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055708364
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1021/je60060a014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055887297
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1021/je60060a015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055887298
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1021/jp071006e schema:sameAs https://app.dimensions.ai/details/publication/pub.1056070903
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1021/jp102874s schema:sameAs https://app.dimensions.ai/details/publication/pub.1056076608
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1021/jp2003485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056081636
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1021/jp911032q schema:sameAs https://app.dimensions.ai/details/publication/pub.1056119150
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1021/jp972543+ schema:sameAs https://app.dimensions.ai/details/publication/pub.1051395238
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1021/jp990822m schema:sameAs https://app.dimensions.ai/details/publication/pub.1056130329
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1021/jz401669d schema:sameAs https://app.dimensions.ai/details/publication/pub.1056135264
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1063/1.1931662 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057832937
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1063/1.2121687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057838121
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1063/1.2335450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057849877
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1063/1.3466751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057956669
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1063/1.3677188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057998420
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1063/1.3679860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057999339
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1063/1.463137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058041148
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1063/1.468303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058046301
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1063/1.4793468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058070119
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1063/1.4935197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017315308
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1063/1.881812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058127299
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1080/00268978700101491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029633599
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1080/00268978800100743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028105515
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1080/08927022.2011.633256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041039597
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1103/physreva.31.1695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060473124
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1103/physrevb.69.134103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060609221
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1260/1750-9548.5.2.145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064585187
245 rdf:type schema:CreativeWork
246 https://www.grid.ac/institutes/grid.18763.3b schema:alternateName Moscow Institute of Physics and Technology
247 schema:name Joint Institute for High Temperatures of RAS
248 Moscow Institute of Physics and Technology (State University)
249 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...