Design of Magnetic Nanoparticles for MRI-Based Theranostics View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016-01-12

AUTHORS

Yanglong Hou , Jing Yu , Xin Chu

ABSTRACT

Magnetic nanoparticles (MNPs) are considered as one of the most developed potential materials in biomedicine. In this chapter, the designing of MNPs for magnetic resonance imaging (MRI)-based theranostics is highlighted. Mechanism for MRI is first introduced, followed by providing some synthetic protocols toward MNPs. Various surface modification techniques are also presented to reach the demand of better MRI-based biomedicine applications. Further theranostic applications of these MNPs are finally discussed including magnetic targeting, controlled drug delivery, magnetic hyperthermia, and controlling of cell fate. More... »

PAGES

3-37

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-981-10-0063-8_1

DOI

http://dx.doi.org/10.1007/978-981-10-0063-8_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041075817


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Macromolecular and Materials Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Engineering, College of Engineering, Peking University, 100871, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "Department of Materials Science and Engineering, College of Engineering, Peking University, 100871, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hou", 
        "givenName": "Yanglong", 
        "id": "sg:person.01077527711.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077527711.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejing University of Technology, 310014, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Materials Science and Engineering, College of Engineering, Peking University, 100871, Beijing, China", 
            "Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejing University of Technology, 310014, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Jing", 
        "id": "sg:person.0741775210.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741775210.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Engineering, College of Engineering, Peking University, 100871, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "Department of Materials Science and Engineering, College of Engineering, Peking University, 100871, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chu", 
        "givenName": "Xin", 
        "id": "sg:person.0701204510.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701204510.63"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2016-01-12", 
    "datePublishedReg": "2016-01-12", 
    "description": "Magnetic nanoparticles (MNPs) are considered as one of the most developed potential materials in biomedicine. In this chapter, the designing of MNPs for magnetic resonance imaging (MRI)-based theranostics is highlighted. Mechanism for MRI is first introduced, followed by providing some synthetic protocols toward MNPs. Various surface modification techniques are also presented to reach the demand of better MRI-based biomedicine applications. Further theranostic applications of these MNPs are finally discussed including magnetic targeting, controlled drug delivery, magnetic hyperthermia, and controlling of cell fate.", 
    "editor": [
      {
        "familyName": "Dai", 
        "givenName": "Zhifei", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-981-10-0063-8_1", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-981-10-0061-4", 
        "978-981-10-0063-8"
      ], 
      "name": "Advances in Nanotheranostics II", 
      "type": "Book"
    }, 
    "keywords": [
      "magnetic nanoparticles", 
      "further theranostic applications", 
      "surface modification techniques", 
      "synthetic protocol", 
      "theranostic applications", 
      "biomedicine applications", 
      "drug delivery", 
      "magnetic hyperthermia", 
      "magnetic targeting", 
      "better MRI", 
      "potential material", 
      "nanoparticles", 
      "modification techniques", 
      "theranostics", 
      "applications", 
      "biomedicine", 
      "protocol", 
      "materials", 
      "delivery", 
      "design", 
      "designing", 
      "demand", 
      "fate", 
      "targeting", 
      "hyperthermia", 
      "technique", 
      "cell fate", 
      "mechanism", 
      "magnetic resonance imaging", 
      "chapter", 
      "resonance imaging", 
      "imaging", 
      "MRI", 
      "developed potential materials", 
      "designing of MNPs"
    ], 
    "name": "Design of Magnetic Nanoparticles for MRI-Based Theranostics", 
    "pagination": "3-37", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041075817"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-981-10-0063-8_1"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-981-10-0063-8_1", 
      "https://app.dimensions.ai/details/publication/pub.1041075817"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_205.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-981-10-0063-8_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-0063-8_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-0063-8_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-0063-8_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-981-10-0063-8_1'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      23 PREDICATES      64 URIs      52 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-981-10-0063-8_1 schema:about anzsrc-for:03
2 anzsrc-for:0303
3 anzsrc-for:0306
4 anzsrc-for:09
5 anzsrc-for:0903
6 anzsrc-for:10
7 anzsrc-for:1007
8 schema:author Ne1fb1989dd814e349b5cd09fbfcba363
9 schema:datePublished 2016-01-12
10 schema:datePublishedReg 2016-01-12
11 schema:description Magnetic nanoparticles (MNPs) are considered as one of the most developed potential materials in biomedicine. In this chapter, the designing of MNPs for magnetic resonance imaging (MRI)-based theranostics is highlighted. Mechanism for MRI is first introduced, followed by providing some synthetic protocols toward MNPs. Various surface modification techniques are also presented to reach the demand of better MRI-based biomedicine applications. Further theranostic applications of these MNPs are finally discussed including magnetic targeting, controlled drug delivery, magnetic hyperthermia, and controlling of cell fate.
12 schema:editor Nd88c3cb1f6e8442c909d8eaa1baf87c7
13 schema:genre chapter
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf Ncdd81a8f696547a085b535bda740671a
17 schema:keywords MRI
18 applications
19 better MRI
20 biomedicine
21 biomedicine applications
22 cell fate
23 chapter
24 delivery
25 demand
26 design
27 designing
28 designing of MNPs
29 developed potential materials
30 drug delivery
31 fate
32 further theranostic applications
33 hyperthermia
34 imaging
35 magnetic hyperthermia
36 magnetic nanoparticles
37 magnetic resonance imaging
38 magnetic targeting
39 materials
40 mechanism
41 modification techniques
42 nanoparticles
43 potential material
44 protocol
45 resonance imaging
46 surface modification techniques
47 synthetic protocol
48 targeting
49 technique
50 theranostic applications
51 theranostics
52 schema:name Design of Magnetic Nanoparticles for MRI-Based Theranostics
53 schema:pagination 3-37
54 schema:productId N5a3200d346d7478b8f1b67f687e28139
55 Nb98e4027ac8f429994cac3fedcc07d4e
56 schema:publisher N01aec22e1441422a8e5fc04c5b612800
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041075817
58 https://doi.org/10.1007/978-981-10-0063-8_1
59 schema:sdDatePublished 2022-01-01T19:12
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N528843bef92a4786aca2cd71b0eb0d5a
62 schema:url https://doi.org/10.1007/978-981-10-0063-8_1
63 sgo:license sg:explorer/license/
64 sgo:sdDataset chapters
65 rdf:type schema:Chapter
66 N01aec22e1441422a8e5fc04c5b612800 schema:name Springer Nature
67 rdf:type schema:Organisation
68 N528843bef92a4786aca2cd71b0eb0d5a schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N5a3200d346d7478b8f1b67f687e28139 schema:name dimensions_id
71 schema:value pub.1041075817
72 rdf:type schema:PropertyValue
73 N6062ff1279864962a85e628df198adfb rdf:first sg:person.0741775210.02
74 rdf:rest Nea542640ad024084a8089a347c428e0e
75 Nb98e4027ac8f429994cac3fedcc07d4e schema:name doi
76 schema:value 10.1007/978-981-10-0063-8_1
77 rdf:type schema:PropertyValue
78 Ncdd81a8f696547a085b535bda740671a schema:isbn 978-981-10-0061-4
79 978-981-10-0063-8
80 schema:name Advances in Nanotheranostics II
81 rdf:type schema:Book
82 Nd88c3cb1f6e8442c909d8eaa1baf87c7 rdf:first Nf9d223f798254dd19baedf5461e9a5a0
83 rdf:rest rdf:nil
84 Ne1fb1989dd814e349b5cd09fbfcba363 rdf:first sg:person.01077527711.63
85 rdf:rest N6062ff1279864962a85e628df198adfb
86 Nea542640ad024084a8089a347c428e0e rdf:first sg:person.0701204510.63
87 rdf:rest rdf:nil
88 Nf9d223f798254dd19baedf5461e9a5a0 schema:familyName Dai
89 schema:givenName Zhifei
90 rdf:type schema:Person
91 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
92 schema:name Chemical Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
95 schema:name Macromolecular and Materials Chemistry
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
98 schema:name Physical Chemistry (incl. Structural)
99 rdf:type schema:DefinedTerm
100 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
101 schema:name Engineering
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
104 schema:name Biomedical Engineering
105 rdf:type schema:DefinedTerm
106 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
107 schema:name Technology
108 rdf:type schema:DefinedTerm
109 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
110 schema:name Nanotechnology
111 rdf:type schema:DefinedTerm
112 sg:person.01077527711.63 schema:affiliation grid-institutes:grid.11135.37
113 schema:familyName Hou
114 schema:givenName Yanglong
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077527711.63
116 rdf:type schema:Person
117 sg:person.0701204510.63 schema:affiliation grid-institutes:grid.11135.37
118 schema:familyName Chu
119 schema:givenName Xin
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701204510.63
121 rdf:type schema:Person
122 sg:person.0741775210.02 schema:affiliation grid-institutes:None
123 schema:familyName Yu
124 schema:givenName Jing
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741775210.02
126 rdf:type schema:Person
127 grid-institutes:None schema:alternateName Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejing University of Technology, 310014, Hangzhou, China
128 schema:name Department of Materials Science and Engineering, College of Engineering, Peking University, 100871, Beijing, China
129 Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejing University of Technology, 310014, Hangzhou, China
130 rdf:type schema:Organization
131 grid-institutes:grid.11135.37 schema:alternateName Department of Materials Science and Engineering, College of Engineering, Peking University, 100871, Beijing, China
132 schema:name Department of Materials Science and Engineering, College of Engineering, Peking University, 100871, Beijing, China
133 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...