Use of an Empirical Model Approach for Modelling Trends of Ecological Sustainability View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015-04-19

AUTHORS

Angela Schlutow , Thomas Dirnböck , Tomasz Pecka , Thomas Scheuschner

ABSTRACT

The BERN (Bioindication for Ecosystem Regeneration towards Natural conditions) model was designed to integrate empirical ecological cause-effect relationships into environmental assessment studies including the derivation of critical loads.Plant species in a natural or semi-natural ecosystem adapted to essential nutrients, water supply and climate conditions via long-term evolutionary development. Therefore changes in vegetation composition and structure may serve as an indicator for alterations of these parameters. Natural plant communities that were observed on reference sites in a reference year, e.g. before major air pollution impact, can be defined as reference communities. They represent the current solution of long-term interaction between their species and the environment. In order to model reactions of plant communities to changes in the environment, the BERN model derives the reference realized niches of plant species (currently 1940) and of plant communities (688 communities in Europe) with their fuzzy (blurred) thresholds of the suitable site parameters. These actually existing combinations of site parameters are identified as in a dynamic nutrient balance and therefore classified as reference site types.Model results show the current deviation of site condition in relation to a reference type, the ability of plant species to recover and potential natural communities in the future. Underlying drivers are future scenarios of land use, geochemical changes (e.g. derived from geochemical models) and climate change. BERN can be used to derive critical limits in order to compute critical loads of eutrophying and acidifying depositions, e.g. for Natura 2000 habitat types. More... »

PAGES

381-400

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-017-9508-1_14

DOI

http://dx.doi.org/10.1007/978-94-017-9508-1_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037899148


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0502", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Science and Management", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Ecology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0699", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "OEKO-DATA Strausberg, Strausberg, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "OEKO-DATA Strausberg, Strausberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schlutow", 
        "givenName": "Angela", 
        "id": "sg:person.013715720564.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013715720564.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Environment Agency Austria, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.100572.1", 
          "name": [
            "Environment Agency Austria, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dirnb\u00f6ck", 
        "givenName": "Thomas", 
        "id": "sg:person.0676115772.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676115772.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Environmental Protection\u2014National Research Institute, Warsaw, Poland", 
          "id": "http://www.grid.ac/institutes/grid.460600.4", 
          "name": [
            "Institute of Environmental Protection\u2014National Research Institute, Warsaw, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pecka", 
        "givenName": "Tomasz", 
        "id": "sg:person.015576731004.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015576731004.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "OEKO-DATA Strausberg, Strausberg, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "OEKO-DATA Strausberg, Strausberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scheuschner", 
        "givenName": "Thomas", 
        "id": "sg:person.07671240204.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07671240204.11"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2015-04-19", 
    "datePublishedReg": "2015-04-19", 
    "description": "The BERN (Bioindication for Ecosystem Regeneration towards Natural conditions) model was designed to integrate empirical ecological cause-effect relationships into environmental assessment studies including the derivation of critical loads.Plant species in a natural or semi-natural ecosystem adapted to essential nutrients, water supply and climate conditions via long-term evolutionary development. Therefore changes in vegetation composition and structure may serve as an indicator for alterations of these parameters. Natural plant communities that were observed on reference sites in a reference year, e.g. before major air pollution impact, can be defined as reference communities. They represent the current solution of long-term interaction between their species and the environment. In order to model reactions of plant communities to changes in the environment, the BERN model derives the reference realized niches of plant species (currently 1940) and of plant communities (688 communities in Europe) with their fuzzy (blurred) thresholds of the suitable site parameters. These actually existing combinations of site parameters are identified as in a dynamic nutrient balance and therefore classified as reference site types.Model results show the current deviation of site condition in relation to a reference type, the ability of plant species to recover and potential natural communities in the future. Underlying drivers are future scenarios of land use, geochemical changes (e.g. derived from geochemical models) and climate change. BERN can be used to derive critical limits in order to compute critical loads of eutrophying and acidifying depositions, e.g. for Natura 2000 habitat types.", 
    "editor": [
      {
        "familyName": "de Vries", 
        "givenName": "Wim", 
        "type": "Person"
      }, 
      {
        "familyName": "Hettelingh", 
        "givenName": "Jean-Paul", 
        "type": "Person"
      }, 
      {
        "familyName": "Posch", 
        "givenName": "Maximilian", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-017-9508-1_14", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-017-9507-4", 
        "978-94-017-9508-1"
      ], 
      "name": "Critical Loads and Dynamic Risk Assessments", 
      "type": "Book"
    }, 
    "keywords": [
      "plant communities", 
      "plant species", 
      "Bern model", 
      "Natura 2000 habitat types", 
      "semi-natural ecosystems", 
      "site parameters", 
      "natural plant communities", 
      "environmental assessment studies", 
      "air pollution impacts", 
      "empirical model approach", 
      "long-term interaction", 
      "vegetation composition", 
      "habitat types", 
      "land use", 
      "ecological sustainability", 
      "natural communities", 
      "nutrient balance", 
      "critical load", 
      "reference communities", 
      "site types", 
      "reference sites", 
      "underlying drivers", 
      "pollution impacts", 
      "site conditions", 
      "climate change", 
      "future scenarios", 
      "climate conditions", 
      "water supply", 
      "critical limit", 
      "cause-effect relationship", 
      "geochemical changes", 
      "community", 
      "assessment studies", 
      "species", 
      "modelling trends", 
      "essential nutrients", 
      "evolutionary development", 
      "reference year", 
      "model results", 
      "ecosystems", 
      "model approach", 
      "nutrients", 
      "sustainability", 
      "niche", 
      "reference types", 
      "changes", 
      "drivers", 
      "environment", 
      "indicators", 
      "composition", 
      "impact", 
      "sites", 
      "types", 
      "supply", 
      "scenarios", 
      "use", 
      "trends", 
      "balance", 
      "conditions", 
      "future", 
      "alterations", 
      "deposition", 
      "Bern", 
      "interaction", 
      "years", 
      "relationship", 
      "ability", 
      "development", 
      "model", 
      "order", 
      "relation", 
      "parameters", 
      "structure", 
      "reference", 
      "approach", 
      "study", 
      "combination", 
      "load", 
      "results", 
      "limit", 
      "current deviation", 
      "reaction", 
      "deviation", 
      "solution", 
      "derivation", 
      "current solutions", 
      "empirical ecological cause-effect relationships", 
      "ecological cause-effect relationships", 
      "long-term evolutionary development", 
      "major air pollution impact", 
      "suitable site parameters", 
      "dynamic nutrient balance", 
      "reference site types", 
      "potential natural communities", 
      "acidifying depositions"
    ], 
    "name": "Use of an Empirical Model Approach for Modelling Trends of Ecological Sustainability", 
    "pagination": "381-400", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037899148"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-017-9508-1_14"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-017-9508-1_14", 
      "https://app.dimensions.ai/details/publication/pub.1037899148"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_210.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-017-9508-1_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-9508-1_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-9508-1_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-9508-1_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-9508-1_14'


 

This table displays all metadata directly associated to this object as RDF triples.

204 TRIPLES      23 PREDICATES      123 URIs      113 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-017-9508-1_14 schema:about anzsrc-for:05
2 anzsrc-for:0502
3 anzsrc-for:06
4 anzsrc-for:0602
5 anzsrc-for:0699
6 schema:author Nebb25228719140bab8df8d58cd2e0d21
7 schema:datePublished 2015-04-19
8 schema:datePublishedReg 2015-04-19
9 schema:description The BERN (Bioindication for Ecosystem Regeneration towards Natural conditions) model was designed to integrate empirical ecological cause-effect relationships into environmental assessment studies including the derivation of critical loads.Plant species in a natural or semi-natural ecosystem adapted to essential nutrients, water supply and climate conditions via long-term evolutionary development. Therefore changes in vegetation composition and structure may serve as an indicator for alterations of these parameters. Natural plant communities that were observed on reference sites in a reference year, e.g. before major air pollution impact, can be defined as reference communities. They represent the current solution of long-term interaction between their species and the environment. In order to model reactions of plant communities to changes in the environment, the BERN model derives the reference realized niches of plant species (currently 1940) and of plant communities (688 communities in Europe) with their fuzzy (blurred) thresholds of the suitable site parameters. These actually existing combinations of site parameters are identified as in a dynamic nutrient balance and therefore classified as reference site types.Model results show the current deviation of site condition in relation to a reference type, the ability of plant species to recover and potential natural communities in the future. Underlying drivers are future scenarios of land use, geochemical changes (e.g. derived from geochemical models) and climate change. BERN can be used to derive critical limits in order to compute critical loads of eutrophying and acidifying depositions, e.g. for Natura 2000 habitat types.
10 schema:editor N9a99e4a85e3548c39b79121183ae7d99
11 schema:genre chapter
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf Nf3858842c9414bfea05b30067d38fe72
15 schema:keywords Bern
16 Bern model
17 Natura 2000 habitat types
18 ability
19 acidifying depositions
20 air pollution impacts
21 alterations
22 approach
23 assessment studies
24 balance
25 cause-effect relationship
26 changes
27 climate change
28 climate conditions
29 combination
30 community
31 composition
32 conditions
33 critical limit
34 critical load
35 current deviation
36 current solutions
37 deposition
38 derivation
39 development
40 deviation
41 drivers
42 dynamic nutrient balance
43 ecological cause-effect relationships
44 ecological sustainability
45 ecosystems
46 empirical ecological cause-effect relationships
47 empirical model approach
48 environment
49 environmental assessment studies
50 essential nutrients
51 evolutionary development
52 future
53 future scenarios
54 geochemical changes
55 habitat types
56 impact
57 indicators
58 interaction
59 land use
60 limit
61 load
62 long-term evolutionary development
63 long-term interaction
64 major air pollution impact
65 model
66 model approach
67 model results
68 modelling trends
69 natural communities
70 natural plant communities
71 niche
72 nutrient balance
73 nutrients
74 order
75 parameters
76 plant communities
77 plant species
78 pollution impacts
79 potential natural communities
80 reaction
81 reference
82 reference communities
83 reference site types
84 reference sites
85 reference types
86 reference year
87 relation
88 relationship
89 results
90 scenarios
91 semi-natural ecosystems
92 site conditions
93 site parameters
94 site types
95 sites
96 solution
97 species
98 structure
99 study
100 suitable site parameters
101 supply
102 sustainability
103 trends
104 types
105 underlying drivers
106 use
107 vegetation composition
108 water supply
109 years
110 schema:name Use of an Empirical Model Approach for Modelling Trends of Ecological Sustainability
111 schema:pagination 381-400
112 schema:productId N50c1e46ddc264822a736727f783151c7
113 Nab08abbafd0948a0818d1da20c3c4613
114 schema:publisher N5979d8872ec441e6969556e2586d9805
115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037899148
116 https://doi.org/10.1007/978-94-017-9508-1_14
117 schema:sdDatePublished 2021-12-01T20:00
118 schema:sdLicense https://scigraph.springernature.com/explorer/license/
119 schema:sdPublisher Ne8ba9bfcd46349f9b2257f860e7610d3
120 schema:url https://doi.org/10.1007/978-94-017-9508-1_14
121 sgo:license sg:explorer/license/
122 sgo:sdDataset chapters
123 rdf:type schema:Chapter
124 N1c7100e461354406b0d824cf7f1e582b schema:familyName de Vries
125 schema:givenName Wim
126 rdf:type schema:Person
127 N237d51eb71ec43a3ab84452381245f2f schema:familyName Posch
128 schema:givenName Maximilian
129 rdf:type schema:Person
130 N3741ba2390724b20b8accdcda40f424d rdf:first sg:person.015576731004.42
131 rdf:rest Nfb927e468c1449c7886007459679305e
132 N50c1e46ddc264822a736727f783151c7 schema:name dimensions_id
133 schema:value pub.1037899148
134 rdf:type schema:PropertyValue
135 N5979d8872ec441e6969556e2586d9805 schema:name Springer Nature
136 rdf:type schema:Organisation
137 N63b5988de22f47dab4e0a6e22c00d908 rdf:first N237d51eb71ec43a3ab84452381245f2f
138 rdf:rest rdf:nil
139 N82834a27c51340d985775976ec34dce7 rdf:first Nfa8c429a4b444d2ca2356571a2622a00
140 rdf:rest N63b5988de22f47dab4e0a6e22c00d908
141 N8b8095368a264087b9d267f79a2db613 rdf:first sg:person.0676115772.52
142 rdf:rest N3741ba2390724b20b8accdcda40f424d
143 N9a99e4a85e3548c39b79121183ae7d99 rdf:first N1c7100e461354406b0d824cf7f1e582b
144 rdf:rest N82834a27c51340d985775976ec34dce7
145 Nab08abbafd0948a0818d1da20c3c4613 schema:name doi
146 schema:value 10.1007/978-94-017-9508-1_14
147 rdf:type schema:PropertyValue
148 Ne8ba9bfcd46349f9b2257f860e7610d3 schema:name Springer Nature - SN SciGraph project
149 rdf:type schema:Organization
150 Nebb25228719140bab8df8d58cd2e0d21 rdf:first sg:person.013715720564.29
151 rdf:rest N8b8095368a264087b9d267f79a2db613
152 Nf3858842c9414bfea05b30067d38fe72 schema:isbn 978-94-017-9507-4
153 978-94-017-9508-1
154 schema:name Critical Loads and Dynamic Risk Assessments
155 rdf:type schema:Book
156 Nfa8c429a4b444d2ca2356571a2622a00 schema:familyName Hettelingh
157 schema:givenName Jean-Paul
158 rdf:type schema:Person
159 Nfb927e468c1449c7886007459679305e rdf:first sg:person.07671240204.11
160 rdf:rest rdf:nil
161 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
162 schema:name Environmental Sciences
163 rdf:type schema:DefinedTerm
164 anzsrc-for:0502 schema:inDefinedTermSet anzsrc-for:
165 schema:name Environmental Science and Management
166 rdf:type schema:DefinedTerm
167 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
168 schema:name Biological Sciences
169 rdf:type schema:DefinedTerm
170 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
171 schema:name Ecology
172 rdf:type schema:DefinedTerm
173 anzsrc-for:0699 schema:inDefinedTermSet anzsrc-for:
174 schema:name Other Biological Sciences
175 rdf:type schema:DefinedTerm
176 sg:person.013715720564.29 schema:affiliation grid-institutes:None
177 schema:familyName Schlutow
178 schema:givenName Angela
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013715720564.29
180 rdf:type schema:Person
181 sg:person.015576731004.42 schema:affiliation grid-institutes:grid.460600.4
182 schema:familyName Pecka
183 schema:givenName Tomasz
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015576731004.42
185 rdf:type schema:Person
186 sg:person.0676115772.52 schema:affiliation grid-institutes:grid.100572.1
187 schema:familyName Dirnböck
188 schema:givenName Thomas
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676115772.52
190 rdf:type schema:Person
191 sg:person.07671240204.11 schema:affiliation grid-institutes:None
192 schema:familyName Scheuschner
193 schema:givenName Thomas
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07671240204.11
195 rdf:type schema:Person
196 grid-institutes:None schema:alternateName OEKO-DATA Strausberg, Strausberg, Germany
197 schema:name OEKO-DATA Strausberg, Strausberg, Germany
198 rdf:type schema:Organization
199 grid-institutes:grid.100572.1 schema:alternateName Environment Agency Austria, Vienna, Austria
200 schema:name Environment Agency Austria, Vienna, Austria
201 rdf:type schema:Organization
202 grid-institutes:grid.460600.4 schema:alternateName Institute of Environmental Protection—National Research Institute, Warsaw, Poland
203 schema:name Institute of Environmental Protection—National Research Institute, Warsaw, Poland
204 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...