Strongly Confined Gap Plasmon Modes in Graphene Sandwiches and Graphene-on-Silicon View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

Yan Francescato , V. Giannini , S. A. Maier

ABSTRACT

Graphene has emerged as a radically new platform in nanotechnology and its tunable optical and electrical properties make it a material of choice for future nanocircuitry (Vakil and Engheta, Science 332(6035):1291–1294, 2011). A key element towards actual devices is the exploration of graphene nanostructures. For instance, graphene nanoribbons, readily fabricated by electron beam lithography, have been shown to be attractive waveguides for plasmons. These bound surface waves arising from the coupling between light and collective oscillations of the charge carriers exhibit indeed unusually strong confinement in graphene (Nikitin et al., Phys Rev B 84:161407, 2011; Christensen et al., ACS Nano 6(1):431–440, 2012). Our work focuses on the physics and the classification of plasmon waveguide modes in structures consisting of two infinitely long graphene ribbons vertically offset by a gap, a “sandwich” geometry. We find strongly hybridized plasmonic modes, some of which are tightly confined within the gap region, and therefore hold promise for nanodevices (Francescato et al., New J Phys 15(6):063020, 2013). In order to aid the understanding of the fundamental physics of the different classes of waveguide modes encountered, we introduce a convention for plotting the mode spectrum which allows to group the modes by shared characteristics. This representation is particularly useful when coupling occurs, because the mode density increases considerably. In this manner, and varying the critical parameters of width, gap and operation wavelength, different regimes, coupling mechanisms and mode families can be recognized. We confirm our findings by considering experimentally realizable systems with tunable graphene doping in a geometry where a single ribbon is placed on top of a highly doped silicon substrate via a dielectric spacer layer. Remarkably, we show that the new gap modes still survive in the latter case. More, we report on an unprecedented level of confinement of a terahertz wave of nearly 5 orders of magnitude. Because of their remarkable field distributions and extreme confinement, the families of modes presented here could serve as the building blocks for both graphene-based integrated optics and ultrasensitive sensing modalities (Francescato et al., New J Phys 15(6):063020, 2013) (Fig. 40.1). More... »

PAGES

493-494

Book

TITLE

Nano-Structures for Optics and Photonics

ISBN

978-94-017-9132-8
978-94-017-9133-5

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-017-9133-5_40

DOI

http://dx.doi.org/10.1007/978-94-017-9133-5_40

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029052138


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "The Blackett Laboratory, Imperial College London, London, SW7 2AZ, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Francescato", 
        "givenName": "Yan", 
        "id": "sg:person.01267247452.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267247452.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "The Blackett Laboratory, Imperial College London, London, SW7 2AZ, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giannini", 
        "givenName": "V.", 
        "id": "sg:person.0622453440.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622453440.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "The Blackett Laboratory, Imperial College London, London, SW7 2AZ, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maier", 
        "givenName": "S. A.", 
        "id": "sg:person.0652737645.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652737645.65"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2015", 
    "datePublishedReg": "2015-01-01", 
    "description": "Graphene has emerged as a radically new platform in nanotechnology and its tunable optical and electrical properties make it a material of choice for future nanocircuitry (Vakil and Engheta, Science 332(6035):1291\u20131294, 2011). A\u00a0key element towards actual devices is the exploration of graphene nanostructures. For instance, graphene nanoribbons, readily fabricated by electron beam lithography, have been shown to be attractive waveguides for plasmons. These bound surface waves arising from the coupling between light and collective oscillations of the charge carriers exhibit indeed unusually strong confinement in graphene (Nikitin\u00a0et\u00a0al., Phys Rev B 84:161407, 2011; Christensen et\u00a0al., ACS Nano 6(1):431\u2013440, 2012). Our work focuses on the physics and the classification of plasmon waveguide modes in structures consisting of two infinitely long graphene ribbons vertically offset by a gap, a \u201csandwich\u201d geometry. We find strongly hybridized plasmonic modes, some of which are tightly confined within the gap region, and therefore hold promise for nanodevices (Francescato et\u00a0al., New J Phys 15(6):063020, 2013). In order to aid the understanding of the fundamental physics of the different classes of waveguide modes encountered, we introduce a convention for plotting the mode spectrum which allows to group the modes by shared characteristics. This representation is particularly useful when coupling occurs, because the mode density increases considerably. In this manner, and varying the critical parameters of width, gap and operation wavelength, different regimes, coupling mechanisms and mode families can be recognized. We confirm our findings by considering experimentally realizable systems with tunable graphene doping in a geometry where a single ribbon is placed on top of a highly doped silicon substrate via a dielectric spacer layer. Remarkably, we show that the new gap modes still survive in the latter case. More, we report on an unprecedented level of confinement of a terahertz wave of nearly 5 orders of magnitude. Because of their remarkable field distributions and extreme confinement, the families of modes presented here could serve as the building blocks for both graphene-based integrated optics and ultrasensitive sensing modalities (Francescato et al., New J Phys 15(6):063020, 2013) (Fig.\u200940.1).", 
    "editor": [
      {
        "familyName": "Di Bartolo", 
        "givenName": "Baldassare", 
        "type": "Person"
      }, 
      {
        "familyName": "Collins", 
        "givenName": "John", 
        "type": "Person"
      }, 
      {
        "familyName": "Silvestri", 
        "givenName": "Luciano", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-017-9133-5_40", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-017-9132-8", 
        "978-94-017-9133-5"
      ], 
      "name": "Nano-Structures for Optics and Photonics", 
      "type": "Book"
    }, 
    "name": "Strongly Confined Gap Plasmon Modes in Graphene Sandwiches and Graphene-on-Silicon", 
    "pagination": "493-494", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-017-9133-5_40"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8a661afaca5a0790f03dd67954f5e700d5e3de703677123bce68b9432b6b8fef"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029052138"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Springer Netherlands", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-017-9133-5_40", 
      "https://app.dimensions.ai/details/publication/pub.1029052138"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T13:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000050.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-94-017-9133-5_40"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-9133-5_40'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-9133-5_40'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-9133-5_40'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-9133-5_40'


 

This table displays all metadata directly associated to this object as RDF triples.

89 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-017-9133-5_40 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author Nbc1bfce0a1a14701924d531eda26f026
4 schema:datePublished 2015
5 schema:datePublishedReg 2015-01-01
6 schema:description Graphene has emerged as a radically new platform in nanotechnology and its tunable optical and electrical properties make it a material of choice for future nanocircuitry (Vakil and Engheta, Science 332(6035):1291–1294, 2011). A key element towards actual devices is the exploration of graphene nanostructures. For instance, graphene nanoribbons, readily fabricated by electron beam lithography, have been shown to be attractive waveguides for plasmons. These bound surface waves arising from the coupling between light and collective oscillations of the charge carriers exhibit indeed unusually strong confinement in graphene (Nikitin et al., Phys Rev B 84:161407, 2011; Christensen et al., ACS Nano 6(1):431–440, 2012). Our work focuses on the physics and the classification of plasmon waveguide modes in structures consisting of two infinitely long graphene ribbons vertically offset by a gap, a “sandwich” geometry. We find strongly hybridized plasmonic modes, some of which are tightly confined within the gap region, and therefore hold promise for nanodevices (Francescato et al., New J Phys 15(6):063020, 2013). In order to aid the understanding of the fundamental physics of the different classes of waveguide modes encountered, we introduce a convention for plotting the mode spectrum which allows to group the modes by shared characteristics. This representation is particularly useful when coupling occurs, because the mode density increases considerably. In this manner, and varying the critical parameters of width, gap and operation wavelength, different regimes, coupling mechanisms and mode families can be recognized. We confirm our findings by considering experimentally realizable systems with tunable graphene doping in a geometry where a single ribbon is placed on top of a highly doped silicon substrate via a dielectric spacer layer. Remarkably, we show that the new gap modes still survive in the latter case. More, we report on an unprecedented level of confinement of a terahertz wave of nearly 5 orders of magnitude. Because of their remarkable field distributions and extreme confinement, the families of modes presented here could serve as the building blocks for both graphene-based integrated optics and ultrasensitive sensing modalities (Francescato et al., New J Phys 15(6):063020, 2013) (Fig. 40.1).
7 schema:editor Na44450ee8b9b4277884e53edd9c3efc1
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N7b4ac698dab144b3bb361c0108417813
12 schema:name Strongly Confined Gap Plasmon Modes in Graphene Sandwiches and Graphene-on-Silicon
13 schema:pagination 493-494
14 schema:productId N248851e71eb54800971d0396c508252d
15 N88ec127e26df457da33b9a128c082f50
16 N89b683c545a84edaaf0d17b93ab730cc
17 schema:publisher Nb2bf25393f1643cc831905665f08485c
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029052138
19 https://doi.org/10.1007/978-94-017-9133-5_40
20 schema:sdDatePublished 2019-04-15T13:15
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N7014f2f21d6647afa131c53b79fc77c3
23 schema:url http://link.springer.com/10.1007/978-94-017-9133-5_40
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N08a17059c2d64e4b82ca91cd66304129 rdf:first sg:person.0652737645.65
28 rdf:rest rdf:nil
29 N113f927c76d5454195c079cc76719f45 rdf:first Nee46c15d5d0e443ab012b6f37ae1ef05
30 rdf:rest rdf:nil
31 N248851e71eb54800971d0396c508252d schema:name readcube_id
32 schema:value 8a661afaca5a0790f03dd67954f5e700d5e3de703677123bce68b9432b6b8fef
33 rdf:type schema:PropertyValue
34 N3adffc43bdc541469bf7f91ca96e2a3e rdf:first Nde500951e7dc4f888d0eb0b055078fb0
35 rdf:rest N113f927c76d5454195c079cc76719f45
36 N7014f2f21d6647afa131c53b79fc77c3 schema:name Springer Nature - SN SciGraph project
37 rdf:type schema:Organization
38 N7b4ac698dab144b3bb361c0108417813 schema:isbn 978-94-017-9132-8
39 978-94-017-9133-5
40 schema:name Nano-Structures for Optics and Photonics
41 rdf:type schema:Book
42 N88ec127e26df457da33b9a128c082f50 schema:name doi
43 schema:value 10.1007/978-94-017-9133-5_40
44 rdf:type schema:PropertyValue
45 N89b683c545a84edaaf0d17b93ab730cc schema:name dimensions_id
46 schema:value pub.1029052138
47 rdf:type schema:PropertyValue
48 Na44450ee8b9b4277884e53edd9c3efc1 rdf:first Nd31e017ed5644d6c8c0b22623809a6e4
49 rdf:rest N3adffc43bdc541469bf7f91ca96e2a3e
50 Nab63194a4b4f443db38da7cec200e104 rdf:first sg:person.0622453440.95
51 rdf:rest N08a17059c2d64e4b82ca91cd66304129
52 Nb2bf25393f1643cc831905665f08485c schema:location Dordrecht
53 schema:name Springer Netherlands
54 rdf:type schema:Organisation
55 Nbc1bfce0a1a14701924d531eda26f026 rdf:first sg:person.01267247452.53
56 rdf:rest Nab63194a4b4f443db38da7cec200e104
57 Nd31e017ed5644d6c8c0b22623809a6e4 schema:familyName Di Bartolo
58 schema:givenName Baldassare
59 rdf:type schema:Person
60 Nde500951e7dc4f888d0eb0b055078fb0 schema:familyName Collins
61 schema:givenName John
62 rdf:type schema:Person
63 Nee46c15d5d0e443ab012b6f37ae1ef05 schema:familyName Silvestri
64 schema:givenName Luciano
65 rdf:type schema:Person
66 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
67 schema:name Physical Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
70 schema:name Optical Physics
71 rdf:type schema:DefinedTerm
72 sg:person.01267247452.53 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
73 schema:familyName Francescato
74 schema:givenName Yan
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267247452.53
76 rdf:type schema:Person
77 sg:person.0622453440.95 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
78 schema:familyName Giannini
79 schema:givenName V.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622453440.95
81 rdf:type schema:Person
82 sg:person.0652737645.65 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
83 schema:familyName Maier
84 schema:givenName S. A.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652737645.65
86 rdf:type schema:Person
87 https://www.grid.ac/institutes/grid.7445.2 schema:alternateName Imperial College London
88 schema:name The Blackett Laboratory, Imperial College London, London, SW7 2AZ, UK
89 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...