On the Ratio-Correlation Regression Method of Population Estimation and Its Variants View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

David A. Swanson , Jeff Tayman

ABSTRACT

The most common regression-based approach to estimating the total population of a given area is the ratio-correlation method. This multiple regression method involves relating changes between several variables known as symptomatic indicators on the one had to population changes on the other hand. Among its many advantages is the fact that regression has a firm foundation in statistical inference, which leads to the construction of meaningful measures of uncertainty around the estimates it produces. No population technique other than those based on survey samples has this characteristic. In this paper, we provide a comprehensive evaluation of this method of population estimation, which has only been partially accomplished in prior studies of it. We discuss not only how some of its weaknesses can be overcome, but also how they can be leveraged into producing more accurate population estimates. More... »

PAGES

93-117

Book

TITLE

Emerging Techniques in Applied Demography

ISBN

978-94-017-8989-9
978-94-017-8990-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-017-8990-5_8

DOI

http://dx.doi.org/10.1007/978-94-017-8990-5_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049455330


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California, Riverside", 
          "id": "https://www.grid.ac/institutes/grid.266097.c", 
          "name": [
            "University of California Riverside"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Swanson", 
        "givenName": "David A.", 
        "id": "sg:person.010015377733.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010015377733.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of San Diego", 
          "id": "https://www.grid.ac/institutes/grid.267102.0", 
          "name": [
            "University of San Diego"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tayman", 
        "givenName": "Jeff", 
        "id": "sg:person.012330665434.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012330665434.70"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/b:popu.0000040046.44909.8c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001149162", 
          "https://doi.org/10.1023/b:popu.0000040046.44909.8c"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2307/2061107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015787159", 
          "https://doi.org/10.2307/2061107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2307/2061166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017487880", 
          "https://doi.org/10.2307/2061166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2307/2061154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027833824", 
          "https://doi.org/10.2307/2061154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2307/2061133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033320547", 
          "https://doi.org/10.2307/2061133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2307/2060811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045902272", 
          "https://doi.org/10.2307/2060811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11113-007-9047-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047608440", 
          "https://doi.org/10.1007/s11113-007-9047-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1956.10501348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058299314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1974.10480220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058301305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1978.10479991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058301910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ss/1177010647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064409616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2573607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069999299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3144384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070209249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-012641955-9/50054-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090076231"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015", 
    "datePublishedReg": "2015-01-01", 
    "description": "The most common regression-based approach to estimating the total population of a given area is the ratio-correlation method. This multiple regression method involves relating changes between several variables known as symptomatic indicators on the one had to population changes on the other hand. Among its many advantages is the fact that regression has a firm foundation in statistical inference, which leads to the construction of meaningful measures of uncertainty around the estimates it produces. No population technique other than those based on survey samples has this characteristic. In this paper, we provide a comprehensive evaluation of this method of population estimation, which has only been partially accomplished in prior studies of it. We discuss not only how some of its weaknesses can be overcome, but also how they can be leveraged into producing more accurate population estimates.", 
    "editor": [
      {
        "familyName": "Hoque", 
        "givenName": "M.Nazrul", 
        "type": "Person"
      }, 
      {
        "familyName": "B. Potter", 
        "givenName": "Lloyd", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-017-8990-5_8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-017-8989-9", 
        "978-94-017-8990-5"
      ], 
      "name": "Emerging Techniques in Applied Demography", 
      "type": "Book"
    }, 
    "name": "On the Ratio-Correlation Regression Method of Population Estimation and Its Variants", 
    "pagination": "93-117", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-017-8990-5_8"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "eb98267c2e4dfa7f282c91bc0e3fac455f7ff702e2054b6daa0ca0119a08f984"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049455330"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Springer Netherlands", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-017-8990-5_8", 
      "https://app.dimensions.ai/details/publication/pub.1049455330"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T14:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000274.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-94-017-8990-5_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-8990-5_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-8990-5_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-8990-5_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-8990-5_8'


 

This table displays all metadata directly associated to this object as RDF triples.

129 TRIPLES      23 PREDICATES      41 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-017-8990-5_8 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nea1821b0d6a24d338c63ba0f52edec87
4 schema:citation sg:pub.10.1007/s11113-007-9047-4
5 sg:pub.10.1023/b:popu.0000040046.44909.8c
6 sg:pub.10.2307/2060811
7 sg:pub.10.2307/2061107
8 sg:pub.10.2307/2061133
9 sg:pub.10.2307/2061154
10 sg:pub.10.2307/2061166
11 https://doi.org/10.1016/b978-012641955-9/50054-0
12 https://doi.org/10.1080/01621459.1956.10501348
13 https://doi.org/10.1080/01621459.1974.10480220
14 https://doi.org/10.1080/01621459.1978.10479991
15 https://doi.org/10.1214/ss/1177010647
16 https://doi.org/10.2307/2573607
17 https://doi.org/10.2307/3144384
18 schema:datePublished 2015
19 schema:datePublishedReg 2015-01-01
20 schema:description The most common regression-based approach to estimating the total population of a given area is the ratio-correlation method. This multiple regression method involves relating changes between several variables known as symptomatic indicators on the one had to population changes on the other hand. Among its many advantages is the fact that regression has a firm foundation in statistical inference, which leads to the construction of meaningful measures of uncertainty around the estimates it produces. No population technique other than those based on survey samples has this characteristic. In this paper, we provide a comprehensive evaluation of this method of population estimation, which has only been partially accomplished in prior studies of it. We discuss not only how some of its weaknesses can be overcome, but also how they can be leveraged into producing more accurate population estimates.
21 schema:editor Nc4112c51ab06429a9bb101848bda5aee
22 schema:genre chapter
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf Nfc7cd7d336784006b1ad876f99152e24
26 schema:name On the Ratio-Correlation Regression Method of Population Estimation and Its Variants
27 schema:pagination 93-117
28 schema:productId N80f83c186ac84283bc4380ee70e2f91b
29 Nb5f5eda084844b9ea50bae43f2bbcf20
30 Nca91ae19d1dd418a8171d6010f9384c5
31 schema:publisher N201ac6b9b4f947ac8dac107ab1baaa11
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049455330
33 https://doi.org/10.1007/978-94-017-8990-5_8
34 schema:sdDatePublished 2019-04-15T14:28
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N8f0c99e10da94a24a0d1abfbc2ff1a11
37 schema:url http://link.springer.com/10.1007/978-94-017-8990-5_8
38 sgo:license sg:explorer/license/
39 sgo:sdDataset chapters
40 rdf:type schema:Chapter
41 N201ac6b9b4f947ac8dac107ab1baaa11 schema:location Dordrecht
42 schema:name Springer Netherlands
43 rdf:type schema:Organisation
44 N3593000330ce497b8e9c8b97e95c13d5 schema:familyName B. Potter
45 schema:givenName Lloyd
46 rdf:type schema:Person
47 N4161b39252a14b4d89bbd1d09bae5ce5 schema:familyName Hoque
48 schema:givenName M.Nazrul
49 rdf:type schema:Person
50 N717daaa58787456c9de3e86d0540d843 rdf:first sg:person.012330665434.70
51 rdf:rest rdf:nil
52 N80f83c186ac84283bc4380ee70e2f91b schema:name dimensions_id
53 schema:value pub.1049455330
54 rdf:type schema:PropertyValue
55 N8f0c99e10da94a24a0d1abfbc2ff1a11 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 N95d4c34674844247a15e9435ef28485f rdf:first N3593000330ce497b8e9c8b97e95c13d5
58 rdf:rest rdf:nil
59 Nb5f5eda084844b9ea50bae43f2bbcf20 schema:name doi
60 schema:value 10.1007/978-94-017-8990-5_8
61 rdf:type schema:PropertyValue
62 Nc4112c51ab06429a9bb101848bda5aee rdf:first N4161b39252a14b4d89bbd1d09bae5ce5
63 rdf:rest N95d4c34674844247a15e9435ef28485f
64 Nca91ae19d1dd418a8171d6010f9384c5 schema:name readcube_id
65 schema:value eb98267c2e4dfa7f282c91bc0e3fac455f7ff702e2054b6daa0ca0119a08f984
66 rdf:type schema:PropertyValue
67 Nea1821b0d6a24d338c63ba0f52edec87 rdf:first sg:person.010015377733.69
68 rdf:rest N717daaa58787456c9de3e86d0540d843
69 Nfc7cd7d336784006b1ad876f99152e24 schema:isbn 978-94-017-8989-9
70 978-94-017-8990-5
71 schema:name Emerging Techniques in Applied Demography
72 rdf:type schema:Book
73 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
74 schema:name Mathematical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
77 schema:name Statistics
78 rdf:type schema:DefinedTerm
79 sg:person.010015377733.69 schema:affiliation https://www.grid.ac/institutes/grid.266097.c
80 schema:familyName Swanson
81 schema:givenName David A.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010015377733.69
83 rdf:type schema:Person
84 sg:person.012330665434.70 schema:affiliation https://www.grid.ac/institutes/grid.267102.0
85 schema:familyName Tayman
86 schema:givenName Jeff
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012330665434.70
88 rdf:type schema:Person
89 sg:pub.10.1007/s11113-007-9047-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047608440
90 https://doi.org/10.1007/s11113-007-9047-4
91 rdf:type schema:CreativeWork
92 sg:pub.10.1023/b:popu.0000040046.44909.8c schema:sameAs https://app.dimensions.ai/details/publication/pub.1001149162
93 https://doi.org/10.1023/b:popu.0000040046.44909.8c
94 rdf:type schema:CreativeWork
95 sg:pub.10.2307/2060811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045902272
96 https://doi.org/10.2307/2060811
97 rdf:type schema:CreativeWork
98 sg:pub.10.2307/2061107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015787159
99 https://doi.org/10.2307/2061107
100 rdf:type schema:CreativeWork
101 sg:pub.10.2307/2061133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033320547
102 https://doi.org/10.2307/2061133
103 rdf:type schema:CreativeWork
104 sg:pub.10.2307/2061154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027833824
105 https://doi.org/10.2307/2061154
106 rdf:type schema:CreativeWork
107 sg:pub.10.2307/2061166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017487880
108 https://doi.org/10.2307/2061166
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/b978-012641955-9/50054-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090076231
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1080/01621459.1956.10501348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058299314
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1080/01621459.1974.10480220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058301305
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1080/01621459.1978.10479991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058301910
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1214/ss/1177010647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064409616
119 rdf:type schema:CreativeWork
120 https://doi.org/10.2307/2573607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069999299
121 rdf:type schema:CreativeWork
122 https://doi.org/10.2307/3144384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070209249
123 rdf:type schema:CreativeWork
124 https://www.grid.ac/institutes/grid.266097.c schema:alternateName University of California, Riverside
125 schema:name University of California Riverside
126 rdf:type schema:Organization
127 https://www.grid.ac/institutes/grid.267102.0 schema:alternateName University of San Diego
128 schema:name University of San Diego
129 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...