Structural Relations between Endoplasmic Reticulum/Plastid Envelope and Protein Import View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1984

AUTHORS

Judy Brangeon , Arlette Forchioni

ABSTRACT

In the developing chloroplast, many cytoplasmic-made components must cross the plastid envelope to reach functional sites within the organelle. Data from cell-free systems have led to several hypotheses to explain the selection and the passage of proteins through the envelope (A. Waksman et al, 1980, R.J. Ellis, 1981). In in vitro systems, the role of structural membrane relationships which might intervene in the movement of material from one site to another cannot be assessed. We have analysed developing cells in vivo in order to determine if and how structural modifications within or between plastids and other cytoplasmic organelles might be involved in a transport mechanism. We present evidence of junctions between nuclear envelope, endoplasmic reticulum and plastid outer envelope membranes and their subsequent fusion leading to a continuous channelled pathway through the cytoplasm. Within the plastid, an “elasticity” of the envelope membranes leads to envaginations and invaginations ensuring continuity to the stroma or the developing thylakoids. The high frequency of ER/plastid conjoints at very early developmental stages suggests that intra-cellular membrane relations may be a vehicule for some protein “traffic” between the site of synthesis and the site of use. More... »

PAGES

23-26

Book

TITLE

Advances in Photosynthesis Research

ISBN

978-90-247-2944-9
978-94-017-4973-2

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-017-4973-2_4

DOI

http://dx.doi.org/10.1007/978-94-017-4973-2_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041203266


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Paris-Sud", 
          "id": "https://www.grid.ac/institutes/grid.5842.b", 
          "name": [
            "Laboratoire Structure et M\u00e9tabolisme des Plantes (Associ\u00e9 au C.N.R.S. LA 40), Universit\u00e9 Paris-Sud, B\u00e2timent 490, 91405, Orsay, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brangeon", 
        "givenName": "Judy", 
        "id": "sg:person.01051106357.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051106357.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Paris-Sud", 
          "id": "https://www.grid.ac/institutes/grid.5842.b", 
          "name": [
            "Laboratoire Structure et M\u00e9tabolisme des Plantes (Associ\u00e9 au C.N.R.S. LA 40), Universit\u00e9 Paris-Sud, B\u00e2timent 490, 91405, Orsay, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Forchioni", 
        "givenName": "Arlette", 
        "id": "sg:person.010574321644.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010574321644.66"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0005-2736(80)90575-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008977852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2736(80)90575-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008977852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1399-3054.1981.tb04508.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023749894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1083/jcb.81.3.461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031795573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.pp.32.060181.000551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042300193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.pp.31.060180.002111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049490304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.182.4114.839", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062508576"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1984", 
    "datePublishedReg": "1984-01-01", 
    "description": "In the developing chloroplast, many cytoplasmic-made components must cross the plastid envelope to reach functional sites within the organelle. Data from cell-free systems have led to several hypotheses to explain the selection and the passage of proteins through the envelope (A. Waksman et al, 1980, R.J. Ellis, 1981). In in vitro systems, the role of structural membrane relationships which might intervene in the movement of material from one site to another cannot be assessed. We have analysed developing cells in vivo in order to determine if and how structural modifications within or between plastids and other cytoplasmic organelles might be involved in a transport mechanism. We present evidence of junctions between nuclear envelope, endoplasmic reticulum and plastid outer envelope membranes and their subsequent fusion leading to a continuous channelled pathway through the cytoplasm. Within the plastid, an \u201celasticity\u201d of the envelope membranes leads to envaginations and invaginations ensuring continuity to the stroma or the developing thylakoids. The high frequency of ER/plastid conjoints at very early developmental stages suggests that intra-cellular membrane relations may be a vehicule for some protein \u201ctraffic\u201d between the site of synthesis and the site of use.", 
    "editor": [
      {
        "familyName": "Sybesma", 
        "givenName": "C.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-017-4973-2_4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-90-247-2944-9", 
        "978-94-017-4973-2"
      ], 
      "name": "Advances in Photosynthesis Research", 
      "type": "Book"
    }, 
    "name": "Structural Relations between Endoplasmic Reticulum/Plastid Envelope and Protein Import", 
    "pagination": "23-26", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041203266"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-017-4973-2_4"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c4478715c5b91308c7da89fc4ed7b845150c3b2e44a415f4f46eecce0f9d5210"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Springer Netherlands", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-017-4973-2_4", 
      "https://app.dimensions.ai/details/publication/pub.1041203266"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60348_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-94-017-4973-2_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-4973-2_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-4973-2_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-4973-2_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-4973-2_4'


 

This table displays all metadata directly associated to this object as RDF triples.

90 TRIPLES      23 PREDICATES      33 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-017-4973-2_4 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N89f6c00240104312a913d9d9c19e83fa
4 schema:citation https://doi.org/10.1016/0005-2736(80)90575-1
5 https://doi.org/10.1083/jcb.81.3.461
6 https://doi.org/10.1111/j.1399-3054.1981.tb04508.x
7 https://doi.org/10.1126/science.182.4114.839
8 https://doi.org/10.1146/annurev.pp.31.060180.002111
9 https://doi.org/10.1146/annurev.pp.32.060181.000551
10 schema:datePublished 1984
11 schema:datePublishedReg 1984-01-01
12 schema:description In the developing chloroplast, many cytoplasmic-made components must cross the plastid envelope to reach functional sites within the organelle. Data from cell-free systems have led to several hypotheses to explain the selection and the passage of proteins through the envelope (A. Waksman et al, 1980, R.J. Ellis, 1981). In in vitro systems, the role of structural membrane relationships which might intervene in the movement of material from one site to another cannot be assessed. We have analysed developing cells in vivo in order to determine if and how structural modifications within or between plastids and other cytoplasmic organelles might be involved in a transport mechanism. We present evidence of junctions between nuclear envelope, endoplasmic reticulum and plastid outer envelope membranes and their subsequent fusion leading to a continuous channelled pathway through the cytoplasm. Within the plastid, an “elasticity” of the envelope membranes leads to envaginations and invaginations ensuring continuity to the stroma or the developing thylakoids. The high frequency of ER/plastid conjoints at very early developmental stages suggests that intra-cellular membrane relations may be a vehicule for some protein “traffic” between the site of synthesis and the site of use.
13 schema:editor Nedc90c767be24396b310f687349a58f1
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf Nbc04253aa06c44e2b0be5ac94360fbef
18 schema:name Structural Relations between Endoplasmic Reticulum/Plastid Envelope and Protein Import
19 schema:pagination 23-26
20 schema:productId N234dca2ae8ac4ba2ba04845845b23b26
21 N469fad3578d24d62be4a858624bc0ecd
22 Ne9fe2dc14cf74694a36ea65aee3adb70
23 schema:publisher N5d250a5a7678437f91f48bc2ad8bd278
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041203266
25 https://doi.org/10.1007/978-94-017-4973-2_4
26 schema:sdDatePublished 2019-04-16T07:02
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N553bf47e612840378f4e183901da9649
29 schema:url https://link.springer.com/10.1007%2F978-94-017-4973-2_4
30 sgo:license sg:explorer/license/
31 sgo:sdDataset chapters
32 rdf:type schema:Chapter
33 N234dca2ae8ac4ba2ba04845845b23b26 schema:name doi
34 schema:value 10.1007/978-94-017-4973-2_4
35 rdf:type schema:PropertyValue
36 N469fad3578d24d62be4a858624bc0ecd schema:name readcube_id
37 schema:value c4478715c5b91308c7da89fc4ed7b845150c3b2e44a415f4f46eecce0f9d5210
38 rdf:type schema:PropertyValue
39 N553bf47e612840378f4e183901da9649 schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 N5d250a5a7678437f91f48bc2ad8bd278 schema:location Dordrecht
42 schema:name Springer Netherlands
43 rdf:type schema:Organisation
44 N775a55de989e426dafadd82b6a44eefe schema:familyName Sybesma
45 schema:givenName C.
46 rdf:type schema:Person
47 N89f6c00240104312a913d9d9c19e83fa rdf:first sg:person.01051106357.22
48 rdf:rest N91378f267b6547258dba48418dcc55d2
49 N91378f267b6547258dba48418dcc55d2 rdf:first sg:person.010574321644.66
50 rdf:rest rdf:nil
51 Nbc04253aa06c44e2b0be5ac94360fbef schema:isbn 978-90-247-2944-9
52 978-94-017-4973-2
53 schema:name Advances in Photosynthesis Research
54 rdf:type schema:Book
55 Ne9fe2dc14cf74694a36ea65aee3adb70 schema:name dimensions_id
56 schema:value pub.1041203266
57 rdf:type schema:PropertyValue
58 Nedc90c767be24396b310f687349a58f1 rdf:first N775a55de989e426dafadd82b6a44eefe
59 rdf:rest rdf:nil
60 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
61 schema:name Biological Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
64 schema:name Biochemistry and Cell Biology
65 rdf:type schema:DefinedTerm
66 sg:person.01051106357.22 schema:affiliation https://www.grid.ac/institutes/grid.5842.b
67 schema:familyName Brangeon
68 schema:givenName Judy
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051106357.22
70 rdf:type schema:Person
71 sg:person.010574321644.66 schema:affiliation https://www.grid.ac/institutes/grid.5842.b
72 schema:familyName Forchioni
73 schema:givenName Arlette
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010574321644.66
75 rdf:type schema:Person
76 https://doi.org/10.1016/0005-2736(80)90575-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008977852
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1083/jcb.81.3.461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031795573
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1111/j.1399-3054.1981.tb04508.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023749894
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1126/science.182.4114.839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062508576
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1146/annurev.pp.31.060180.002111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049490304
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1146/annurev.pp.32.060181.000551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042300193
87 rdf:type schema:CreativeWork
88 https://www.grid.ac/institutes/grid.5842.b schema:alternateName University of Paris-Sud
89 schema:name Laboratoire Structure et Métabolisme des Plantes (Associé au C.N.R.S. LA 40), Université Paris-Sud, Bâtiment 490, 91405, Orsay, France
90 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...