Ontology type: schema:Chapter
2004
AUTHORSL. V. Moroz , G. Baratta , E. Distefano , G. Strazzulla , L. V. Starukhina , E. Dotto , M. A. Barucci
ABSTRACTTrans-Neptunian Objects (TNOs) and Centaurs show remarkable colour variations in the visual and near-infrared spectral regions. Surface alteration processes such as space weathering (e.g., bombardment with ions) and impact resurfacing may play an important role in the colour diversity of such bodies. Ion irradiation of hydrocarbon ices and their mixtures with water ice transforms neutral (grey) surface colours of ices to red and further to grey. Along with the ices, TNOs and Centaurs probably contain complex carbonaceous compounds, in particular, complex hydrocarbons. Unlike ices, such refractory organic materials have originally low visual albedos and red colours in the visible and near-infrared ranges. Here we present the first results of ion irradiation experiments on asphaltite. Asphaltite is a natural complex hydrocarbon material. The reflectance spectra of asphaltite in the 0.4–0.8 µm range have been recorded before irradiation and after each irradiation step. We demonstrate that irradiation of this red dark material with 30 keV H+ and 15 keV N+ ions gradually transforms its colour from red to grey as a result of carbonization. A moderate increase in the visual albedo has been observed. These results may imply that the surfaces of primitive red objects optically dominated by complex refractory organics may show a similar space weathering trend. Our laboratory results were compared with published colours of TNOs and Centaurs. A broad variety of spectral colours observed for TNOs and Centaurs may be reproduced by various spectra of irradiated organics corresponding to different ion fluences. However, such objects probably also contain ices and silicate components which show different space weathering trends. This fact, together with a lack of information about albedos, may explain difficulties to reveal correlations between surface colours within TNO and Centaur populations and their other properties, such as absolute magnitudes and orbital parameters. More... »
PAGES279-289
The First Decadal Review of the Edgeworth-Kuiper Belt
ISBN
978-90-481-6501-8
978-94-017-3321-2
http://scigraph.springernature.com/pub.10.1007/978-94-017-3321-2_25
DOIhttp://dx.doi.org/10.1007/978-94-017-3321-2_25
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1023405758
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Chemistry (incl. Structural)",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Optical Space Systems, German Aerospace Center (DLR), Rutherfordstr. 2, D-12489, Berlin, Germany",
"id": "http://www.grid.ac/institutes/grid.7551.6",
"name": [
"Optical Space Systems, German Aerospace Center (DLR), Rutherfordstr. 2, D-12489, Berlin, Germany"
],
"type": "Organization"
},
"familyName": "Moroz",
"givenName": "L. V.",
"id": "sg:person.010714713371.30",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010714713371.30"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Catania Astrophysical Observatory, INAF, Via S. Sofia 78, I-95123, Catania, Italy",
"id": "http://www.grid.ac/institutes/grid.450009.8",
"name": [
"Catania Astrophysical Observatory, INAF, Via S. Sofia 78, I-95123, Catania, Italy"
],
"type": "Organization"
},
"familyName": "Baratta",
"givenName": "G.",
"id": "sg:person.01312002514.35",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312002514.35"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Catania Astrophysical Observatory, INAF, Via S. Sofia 78, I-95123, Catania, Italy",
"id": "http://www.grid.ac/institutes/grid.450009.8",
"name": [
"Catania Astrophysical Observatory, INAF, Via S. Sofia 78, I-95123, Catania, Italy"
],
"type": "Organization"
},
"familyName": "Distefano",
"givenName": "E.",
"id": "sg:person.010465664726.17",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010465664726.17"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Catania Astrophysical Observatory, INAF, Via S. Sofia 78, I-95123, Catania, Italy",
"id": "http://www.grid.ac/institutes/grid.450009.8",
"name": [
"Catania Astrophysical Observatory, INAF, Via S. Sofia 78, I-95123, Catania, Italy"
],
"type": "Organization"
},
"familyName": "Strazzulla",
"givenName": "G.",
"id": "sg:person.01175554114.34",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175554114.34"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Astronomical Institute of Kharkov National University, Sumskaya 35, 61022, Kharkov, Ukraine",
"id": "http://www.grid.ac/institutes/grid.18999.30",
"name": [
"Astronomical Institute of Kharkov National University, Sumskaya 35, 61022, Kharkov, Ukraine"
],
"type": "Organization"
},
"familyName": "Starukhina",
"givenName": "L. V.",
"id": "sg:person.011523026371.74",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011523026371.74"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Rome Astrophysical Observatory, INAF, Via Frascati 33, 1-00040, Monteporzio Catone (Rome), Italy",
"id": "http://www.grid.ac/institutes/grid.4293.c",
"name": [
"Rome Astrophysical Observatory, INAF, Via Frascati 33, 1-00040, Monteporzio Catone (Rome), Italy"
],
"type": "Organization"
},
"familyName": "Dotto",
"givenName": "E.",
"id": "sg:person.012505135341.14",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012505135341.14"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Paris Observatory, 5 Pl. Jules Janssen, F-92195, Meudon Principal Cedex, France",
"id": "http://www.grid.ac/institutes/grid.4307.0",
"name": [
"Paris Observatory, 5 Pl. Jules Janssen, F-92195, Meudon Principal Cedex, France"
],
"type": "Organization"
},
"familyName": "Barucci",
"givenName": "M. A.",
"id": "sg:person.015045064531.57",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015045064531.57"
],
"type": "Person"
}
],
"datePublished": "2004",
"datePublishedReg": "2004-01-01",
"description": "Trans-Neptunian Objects (TNOs) and Centaurs show remarkable colour variations in the visual and near-infrared spectral regions. Surface alteration processes such as space weathering (e.g., bombardment with ions) and impact resurfacing may play an important role in the colour diversity of such bodies. Ion irradiation of hydrocarbon ices and their mixtures with water ice transforms neutral (grey) surface colours of ices to red and further to grey. Along with the ices, TNOs and Centaurs probably contain complex carbonaceous compounds, in particular, complex hydrocarbons. Unlike ices, such refractory organic materials have originally low visual albedos and red colours in the visible and near-infrared ranges. Here we present the first results of ion irradiation experiments on asphaltite. Asphaltite is a natural complex hydrocarbon material. The reflectance spectra of asphaltite in the 0.4\u20130.8 \u00b5m range have been recorded before irradiation and after each irradiation step. We demonstrate that irradiation of this red dark material with 30 keV H+ and 15 keV N+ ions gradually transforms its colour from red to grey as a result of carbonization. A moderate increase in the visual albedo has been observed. These results may imply that the surfaces of primitive red objects optically dominated by complex refractory organics may show a similar space weathering trend. Our laboratory results were compared with published colours of TNOs and Centaurs. A broad variety of spectral colours observed for TNOs and Centaurs may be reproduced by various spectra of irradiated organics corresponding to different ion fluences. However, such objects probably also contain ices and silicate components which show different space weathering trends. This fact, together with a lack of information about albedos, may explain difficulties to reveal correlations between surface colours within TNO and Centaur populations and their other properties, such as absolute magnitudes and orbital parameters.",
"editor": [
{
"familyName": "Davies",
"givenName": "John K.",
"type": "Person"
},
{
"familyName": "Barrera",
"givenName": "Luis H.",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-94-017-3321-2_25",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-90-481-6501-8",
"978-94-017-3321-2"
],
"name": "The First Decadal Review of the Edgeworth-Kuiper Belt",
"type": "Book"
},
"keywords": [
"trans-Neptunian objects",
"ion irradiation",
"visual albedo",
"different ion fluences",
"complex carbonaceous compounds",
"ion irradiation experiments",
"red objects",
"optical effects",
"ion fluence",
"hydrocarbon ices",
"spectral region",
"orbital parameters",
"space weathering",
"absolute magnitude",
"irradiation experiments",
"refractory organic material",
"irradiation step",
"water ice",
"such objects",
"remarkable color variation",
"result of carbonization",
"first results",
"dark material",
"Centaur population",
"complex hydrocarbons",
"albedo",
"spectral colors",
"irradiation",
"Centaur",
"hydrocarbon materials",
"keV",
"organic materials",
"fluence",
"red color",
"surface alteration processes",
"spectra",
"ions",
"objects",
"reflectance",
"carbonaceous compounds",
"range",
"color variation",
"materials",
"color",
"surface color",
"ice",
"surface",
"space",
"broad variety",
"properties",
"magnitude",
"experiments",
"such bodies",
"similar space",
"red",
"parameters",
"silicate components",
"region",
"results",
"color diversity",
"organics",
"components",
"variation",
"mixture",
"different spaces",
"correlation",
"refractory organics",
"process",
"effect",
"important role",
"compounds",
"alteration processes",
"fact",
"increase",
"step",
"carbonization",
"variety",
"information",
"asphaltite",
"trends",
"hydrocarbons",
"laboratory results",
"difficulties",
"body",
"moderate increase",
"implications",
"role",
"impact",
"grey",
"population",
"lack",
"lack of information",
"weathering",
"diversity"
],
"name": "Ion Irradiation of Asphaltite: Optical Effects and Implications for Trans-Neptunian Objects and Centaurs",
"pagination": "279-289",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1023405758"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-94-017-3321-2_25"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-94-017-3321-2_25",
"https://app.dimensions.ai/details/publication/pub.1023405758"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-10T10:55",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_63.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-94-017-3321-2_25"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-3321-2_25'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-3321-2_25'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-3321-2_25'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-3321-2_25'
This table displays all metadata directly associated to this object as RDF triples.
213 TRIPLES
23 PREDICATES
120 URIs
113 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-94-017-3321-2_25 | schema:about | anzsrc-for:03 |
2 | ″ | ″ | anzsrc-for:0306 |
3 | ″ | schema:author | N2471e63404704b179778f67aab5dcfb4 |
4 | ″ | schema:datePublished | 2004 |
5 | ″ | schema:datePublishedReg | 2004-01-01 |
6 | ″ | schema:description | Trans-Neptunian Objects (TNOs) and Centaurs show remarkable colour variations in the visual and near-infrared spectral regions. Surface alteration processes such as space weathering (e.g., bombardment with ions) and impact resurfacing may play an important role in the colour diversity of such bodies. Ion irradiation of hydrocarbon ices and their mixtures with water ice transforms neutral (grey) surface colours of ices to red and further to grey. Along with the ices, TNOs and Centaurs probably contain complex carbonaceous compounds, in particular, complex hydrocarbons. Unlike ices, such refractory organic materials have originally low visual albedos and red colours in the visible and near-infrared ranges. Here we present the first results of ion irradiation experiments on asphaltite. Asphaltite is a natural complex hydrocarbon material. The reflectance spectra of asphaltite in the 0.4–0.8 µm range have been recorded before irradiation and after each irradiation step. We demonstrate that irradiation of this red dark material with 30 keV H+ and 15 keV N+ ions gradually transforms its colour from red to grey as a result of carbonization. A moderate increase in the visual albedo has been observed. These results may imply that the surfaces of primitive red objects optically dominated by complex refractory organics may show a similar space weathering trend. Our laboratory results were compared with published colours of TNOs and Centaurs. A broad variety of spectral colours observed for TNOs and Centaurs may be reproduced by various spectra of irradiated organics corresponding to different ion fluences. However, such objects probably also contain ices and silicate components which show different space weathering trends. This fact, together with a lack of information about albedos, may explain difficulties to reveal correlations between surface colours within TNO and Centaur populations and their other properties, such as absolute magnitudes and orbital parameters. |
7 | ″ | schema:editor | N0f9a867da0c34e8aa7e82b833cd9f483 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | Nf469785063ff4ab4b35fae11957b1529 |
12 | ″ | schema:keywords | Centaur |
13 | ″ | ″ | Centaur population |
14 | ″ | ″ | absolute magnitude |
15 | ″ | ″ | albedo |
16 | ″ | ″ | alteration processes |
17 | ″ | ″ | asphaltite |
18 | ″ | ″ | body |
19 | ″ | ″ | broad variety |
20 | ″ | ″ | carbonaceous compounds |
21 | ″ | ″ | carbonization |
22 | ″ | ″ | color |
23 | ″ | ″ | color diversity |
24 | ″ | ″ | color variation |
25 | ″ | ″ | complex carbonaceous compounds |
26 | ″ | ″ | complex hydrocarbons |
27 | ″ | ″ | components |
28 | ″ | ″ | compounds |
29 | ″ | ″ | correlation |
30 | ″ | ″ | dark material |
31 | ″ | ″ | different ion fluences |
32 | ″ | ″ | different spaces |
33 | ″ | ″ | difficulties |
34 | ″ | ″ | diversity |
35 | ″ | ″ | effect |
36 | ″ | ″ | experiments |
37 | ″ | ″ | fact |
38 | ″ | ″ | first results |
39 | ″ | ″ | fluence |
40 | ″ | ″ | grey |
41 | ″ | ″ | hydrocarbon ices |
42 | ″ | ″ | hydrocarbon materials |
43 | ″ | ″ | hydrocarbons |
44 | ″ | ″ | ice |
45 | ″ | ″ | impact |
46 | ″ | ″ | implications |
47 | ″ | ″ | important role |
48 | ″ | ″ | increase |
49 | ″ | ″ | information |
50 | ″ | ″ | ion fluence |
51 | ″ | ″ | ion irradiation |
52 | ″ | ″ | ion irradiation experiments |
53 | ″ | ″ | ions |
54 | ″ | ″ | irradiation |
55 | ″ | ″ | irradiation experiments |
56 | ″ | ″ | irradiation step |
57 | ″ | ″ | keV |
58 | ″ | ″ | laboratory results |
59 | ″ | ″ | lack |
60 | ″ | ″ | lack of information |
61 | ″ | ″ | magnitude |
62 | ″ | ″ | materials |
63 | ″ | ″ | mixture |
64 | ″ | ″ | moderate increase |
65 | ″ | ″ | objects |
66 | ″ | ″ | optical effects |
67 | ″ | ″ | orbital parameters |
68 | ″ | ″ | organic materials |
69 | ″ | ″ | organics |
70 | ″ | ″ | parameters |
71 | ″ | ″ | population |
72 | ″ | ″ | process |
73 | ″ | ″ | properties |
74 | ″ | ″ | range |
75 | ″ | ″ | red |
76 | ″ | ″ | red color |
77 | ″ | ″ | red objects |
78 | ″ | ″ | reflectance |
79 | ″ | ″ | refractory organic material |
80 | ″ | ″ | refractory organics |
81 | ″ | ″ | region |
82 | ″ | ″ | remarkable color variation |
83 | ″ | ″ | result of carbonization |
84 | ″ | ″ | results |
85 | ″ | ″ | role |
86 | ″ | ″ | silicate components |
87 | ″ | ″ | similar space |
88 | ″ | ″ | space |
89 | ″ | ″ | space weathering |
90 | ″ | ″ | spectra |
91 | ″ | ″ | spectral colors |
92 | ″ | ″ | spectral region |
93 | ″ | ″ | step |
94 | ″ | ″ | such bodies |
95 | ″ | ″ | such objects |
96 | ″ | ″ | surface |
97 | ″ | ″ | surface alteration processes |
98 | ″ | ″ | surface color |
99 | ″ | ″ | trans-Neptunian objects |
100 | ″ | ″ | trends |
101 | ″ | ″ | variation |
102 | ″ | ″ | variety |
103 | ″ | ″ | visual albedo |
104 | ″ | ″ | water ice |
105 | ″ | ″ | weathering |
106 | ″ | schema:name | Ion Irradiation of Asphaltite: Optical Effects and Implications for Trans-Neptunian Objects and Centaurs |
107 | ″ | schema:pagination | 279-289 |
108 | ″ | schema:productId | N2d83a1cc21ba425fbba96e688687519f |
109 | ″ | ″ | Nd1439be2c8c448c2b40b8926c0cc6824 |
110 | ″ | schema:publisher | Nea9f9f7399ac402e84aaaec4fb256794 |
111 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1023405758 |
112 | ″ | ″ | https://doi.org/10.1007/978-94-017-3321-2_25 |
113 | ″ | schema:sdDatePublished | 2022-05-10T10:55 |
114 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
115 | ″ | schema:sdPublisher | N80f6ae8f79744b86b2ba28067a8e3676 |
116 | ″ | schema:url | https://doi.org/10.1007/978-94-017-3321-2_25 |
117 | ″ | sgo:license | sg:explorer/license/ |
118 | ″ | sgo:sdDataset | chapters |
119 | ″ | rdf:type | schema:Chapter |
120 | N047b009d9b1e415ab696370e0ce8b7d6 | rdf:first | Nb5ea384d42d2480b84eeeb078026316e |
121 | ″ | rdf:rest | rdf:nil |
122 | N0f9a867da0c34e8aa7e82b833cd9f483 | rdf:first | Ne18f37ce7e1f43b29470edfd7bf2f54e |
123 | ″ | rdf:rest | N047b009d9b1e415ab696370e0ce8b7d6 |
124 | N2471e63404704b179778f67aab5dcfb4 | rdf:first | sg:person.010714713371.30 |
125 | ″ | rdf:rest | N32f8171387d44874811d1ee02190dea4 |
126 | N2d83a1cc21ba425fbba96e688687519f | schema:name | doi |
127 | ″ | schema:value | 10.1007/978-94-017-3321-2_25 |
128 | ″ | rdf:type | schema:PropertyValue |
129 | N32f8171387d44874811d1ee02190dea4 | rdf:first | sg:person.01312002514.35 |
130 | ″ | rdf:rest | Ne84c163c7fb94399b9ebf2ecb9a26aeb |
131 | N4f130bf7917a41bc8693eb07406446ca | rdf:first | sg:person.01175554114.34 |
132 | ″ | rdf:rest | Nd7796fe244db4923bf526bc385cba8dd |
133 | N80f6ae8f79744b86b2ba28067a8e3676 | schema:name | Springer Nature - SN SciGraph project |
134 | ″ | rdf:type | schema:Organization |
135 | Naefb30f4f8df4f1881b7dee2ca4d4a80 | rdf:first | sg:person.012505135341.14 |
136 | ″ | rdf:rest | Nbea9a62008d2477cb9a3edbc5dbe308b |
137 | Nb5ea384d42d2480b84eeeb078026316e | schema:familyName | Barrera |
138 | ″ | schema:givenName | Luis H. |
139 | ″ | rdf:type | schema:Person |
140 | Nbea9a62008d2477cb9a3edbc5dbe308b | rdf:first | sg:person.015045064531.57 |
141 | ″ | rdf:rest | rdf:nil |
142 | Nd1439be2c8c448c2b40b8926c0cc6824 | schema:name | dimensions_id |
143 | ″ | schema:value | pub.1023405758 |
144 | ″ | rdf:type | schema:PropertyValue |
145 | Nd7796fe244db4923bf526bc385cba8dd | rdf:first | sg:person.011523026371.74 |
146 | ″ | rdf:rest | Naefb30f4f8df4f1881b7dee2ca4d4a80 |
147 | Ne18f37ce7e1f43b29470edfd7bf2f54e | schema:familyName | Davies |
148 | ″ | schema:givenName | John K. |
149 | ″ | rdf:type | schema:Person |
150 | Ne84c163c7fb94399b9ebf2ecb9a26aeb | rdf:first | sg:person.010465664726.17 |
151 | ″ | rdf:rest | N4f130bf7917a41bc8693eb07406446ca |
152 | Nea9f9f7399ac402e84aaaec4fb256794 | schema:name | Springer Nature |
153 | ″ | rdf:type | schema:Organisation |
154 | Nf469785063ff4ab4b35fae11957b1529 | schema:isbn | 978-90-481-6501-8 |
155 | ″ | ″ | 978-94-017-3321-2 |
156 | ″ | schema:name | The First Decadal Review of the Edgeworth-Kuiper Belt |
157 | ″ | rdf:type | schema:Book |
158 | anzsrc-for:03 | schema:inDefinedTermSet | anzsrc-for: |
159 | ″ | schema:name | Chemical Sciences |
160 | ″ | rdf:type | schema:DefinedTerm |
161 | anzsrc-for:0306 | schema:inDefinedTermSet | anzsrc-for: |
162 | ″ | schema:name | Physical Chemistry (incl. Structural) |
163 | ″ | rdf:type | schema:DefinedTerm |
164 | sg:person.010465664726.17 | schema:affiliation | grid-institutes:grid.450009.8 |
165 | ″ | schema:familyName | Distefano |
166 | ″ | schema:givenName | E. |
167 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010465664726.17 |
168 | ″ | rdf:type | schema:Person |
169 | sg:person.010714713371.30 | schema:affiliation | grid-institutes:grid.7551.6 |
170 | ″ | schema:familyName | Moroz |
171 | ″ | schema:givenName | L. V. |
172 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010714713371.30 |
173 | ″ | rdf:type | schema:Person |
174 | sg:person.011523026371.74 | schema:affiliation | grid-institutes:grid.18999.30 |
175 | ″ | schema:familyName | Starukhina |
176 | ″ | schema:givenName | L. V. |
177 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011523026371.74 |
178 | ″ | rdf:type | schema:Person |
179 | sg:person.01175554114.34 | schema:affiliation | grid-institutes:grid.450009.8 |
180 | ″ | schema:familyName | Strazzulla |
181 | ″ | schema:givenName | G. |
182 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175554114.34 |
183 | ″ | rdf:type | schema:Person |
184 | sg:person.012505135341.14 | schema:affiliation | grid-institutes:grid.4293.c |
185 | ″ | schema:familyName | Dotto |
186 | ″ | schema:givenName | E. |
187 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012505135341.14 |
188 | ″ | rdf:type | schema:Person |
189 | sg:person.01312002514.35 | schema:affiliation | grid-institutes:grid.450009.8 |
190 | ″ | schema:familyName | Baratta |
191 | ″ | schema:givenName | G. |
192 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312002514.35 |
193 | ″ | rdf:type | schema:Person |
194 | sg:person.015045064531.57 | schema:affiliation | grid-institutes:grid.4307.0 |
195 | ″ | schema:familyName | Barucci |
196 | ″ | schema:givenName | M. A. |
197 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015045064531.57 |
198 | ″ | rdf:type | schema:Person |
199 | grid-institutes:grid.18999.30 | schema:alternateName | Astronomical Institute of Kharkov National University, Sumskaya 35, 61022, Kharkov, Ukraine |
200 | ″ | schema:name | Astronomical Institute of Kharkov National University, Sumskaya 35, 61022, Kharkov, Ukraine |
201 | ″ | rdf:type | schema:Organization |
202 | grid-institutes:grid.4293.c | schema:alternateName | Rome Astrophysical Observatory, INAF, Via Frascati 33, 1-00040, Monteporzio Catone (Rome), Italy |
203 | ″ | schema:name | Rome Astrophysical Observatory, INAF, Via Frascati 33, 1-00040, Monteporzio Catone (Rome), Italy |
204 | ″ | rdf:type | schema:Organization |
205 | grid-institutes:grid.4307.0 | schema:alternateName | Paris Observatory, 5 Pl. Jules Janssen, F-92195, Meudon Principal Cedex, France |
206 | ″ | schema:name | Paris Observatory, 5 Pl. Jules Janssen, F-92195, Meudon Principal Cedex, France |
207 | ″ | rdf:type | schema:Organization |
208 | grid-institutes:grid.450009.8 | schema:alternateName | Catania Astrophysical Observatory, INAF, Via S. Sofia 78, I-95123, Catania, Italy |
209 | ″ | schema:name | Catania Astrophysical Observatory, INAF, Via S. Sofia 78, I-95123, Catania, Italy |
210 | ″ | rdf:type | schema:Organization |
211 | grid-institutes:grid.7551.6 | schema:alternateName | Optical Space Systems, German Aerospace Center (DLR), Rutherfordstr. 2, D-12489, Berlin, Germany |
212 | ″ | schema:name | Optical Space Systems, German Aerospace Center (DLR), Rutherfordstr. 2, D-12489, Berlin, Germany |
213 | ″ | rdf:type | schema:Organization |