Use and Structure of Slepian Model Processes for Prediction and Detection in Crossing and Extreme Value Theory View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1984

AUTHORS

Georg Lindgren

ABSTRACT

A Slepian model is a random function representation of the conditional behaviour of a Gaussian process after events defined by its level or curve crossings. It contains one regression term with random (non-Gaussian) parameters, describing initial values of derivatives etc. at the crossing, and one (Gaussian) residual process. Its explicit structure makes it well suited for probabilistic manipulations, finite approximations, and asymptotic expansions.Part of the paper deals with the model structure for univariate processes and with generalizations to vector processes conditioned on crossings of smooth boundaries, and to multipara-meter fields, conditioned on local extremes or level curve conditions.The usefulness of the Slepian model is illustrated by examples dealing with optimal level crossing prediction in discrete and continuous time, non-linear jump phenomena in vehicle dynamics, click noise in FM radio, and wave-characteristic distributions in random waves with application to fatigue. More... »

PAGES

261-284

Book

TITLE

Statistical Extremes and Applications

ISBN

978-90-481-8401-9
978-94-017-3069-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-017-3069-3_18

DOI

http://dx.doi.org/10.1007/978-94-017-3069-3_18

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010218558


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Statistics, University of Lund, Box 725, S-220 07, Lund, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.4514.4", 
          "name": [
            "Department of Mathematical Statistics, University of Lund, Box 725, S-220 07, Lund, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lindgren", 
        "givenName": "Georg", 
        "id": "sg:person.012274436413.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012274436413.00"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1984", 
    "datePublishedReg": "1984-01-01", 
    "description": "A Slepian model is a random function representation of the conditional behaviour of a Gaussian process after events defined by its level or curve crossings. It contains one regression term with random (non-Gaussian) parameters, describing initial values of derivatives etc. at the crossing, and one (Gaussian) residual process. Its explicit structure makes it well suited for probabilistic manipulations, finite approximations, and asymptotic expansions.Part of the paper deals with the model structure for univariate processes and with generalizations to vector processes conditioned on crossings of smooth boundaries, and to multipara-meter fields, conditioned on local extremes or level curve conditions.The usefulness of the Slepian model is illustrated by examples dealing with optimal level crossing prediction in discrete and continuous time, non-linear jump phenomena in vehicle dynamics, click noise in FM radio, and wave-characteristic distributions in random waves with application to fatigue.", 
    "editor": [
      {
        "familyName": "Oliveira", 
        "givenName": "J. Tiago", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-017-3069-3_18", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-90-481-8401-9", 
        "978-94-017-3069-3"
      ], 
      "name": "Statistical Extremes and Applications", 
      "type": "Book"
    }, 
    "keywords": [
      "non-linear jump phenomena", 
      "Slepian model", 
      "Slepian model process", 
      "extreme value theory", 
      "random parameters", 
      "finite approximations", 
      "continuous time", 
      "vector process", 
      "probabilistic manipulation", 
      "vehicle dynamics", 
      "smooth boundary", 
      "function representation", 
      "Gaussian process", 
      "asymptotic expansion", 
      "value theory", 
      "explicit structure", 
      "univariate processes", 
      "regression terms", 
      "model structure", 
      "residual process", 
      "jump phenomenon", 
      "random waves", 
      "initial value", 
      "curve conditions", 
      "local extremes", 
      "paper deals", 
      "approximation", 
      "generalization", 
      "model", 
      "model processes", 
      "theory", 
      "noise", 
      "dynamics", 
      "representation", 
      "prediction", 
      "parameters", 
      "crossing", 
      "applications", 
      "terms", 
      "derivatives", 
      "structure", 
      "expansion", 
      "process", 
      "boundaries", 
      "distribution", 
      "field", 
      "conditional behavior", 
      "curve crossing", 
      "deal", 
      "conditions", 
      "phenomenon", 
      "usefulness", 
      "waves", 
      "FM radio", 
      "behavior", 
      "extremes", 
      "time", 
      "values", 
      "use", 
      "part", 
      "radio", 
      "manipulation", 
      "detection", 
      "example", 
      "events", 
      "levels", 
      "fatigue", 
      "random function representation", 
      "multipara-meter fields", 
      "level curve conditions", 
      "optimal level crossing prediction", 
      "level crossing prediction", 
      "crossing prediction", 
      "wave-characteristic distributions"
    ], 
    "name": "Use and Structure of Slepian Model Processes for Prediction and Detection in Crossing and Extreme Value Theory", 
    "pagination": "261-284", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010218558"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-017-3069-3_18"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-017-3069-3_18", 
      "https://app.dimensions.ai/details/publication/pub.1010218558"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_162.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-017-3069-3_18"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-3069-3_18'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-3069-3_18'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-3069-3_18'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-3069-3_18'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      23 PREDICATES      100 URIs      93 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-017-3069-3_18 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N590fe5b9b5c945e3896746ebadb37683
4 schema:datePublished 1984
5 schema:datePublishedReg 1984-01-01
6 schema:description A Slepian model is a random function representation of the conditional behaviour of a Gaussian process after events defined by its level or curve crossings. It contains one regression term with random (non-Gaussian) parameters, describing initial values of derivatives etc. at the crossing, and one (Gaussian) residual process. Its explicit structure makes it well suited for probabilistic manipulations, finite approximations, and asymptotic expansions.Part of the paper deals with the model structure for univariate processes and with generalizations to vector processes conditioned on crossings of smooth boundaries, and to multipara-meter fields, conditioned on local extremes or level curve conditions.The usefulness of the Slepian model is illustrated by examples dealing with optimal level crossing prediction in discrete and continuous time, non-linear jump phenomena in vehicle dynamics, click noise in FM radio, and wave-characteristic distributions in random waves with application to fatigue.
7 schema:editor N6e9ceafcea714cad8f32de1c3438ae03
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N94b16fb80a38476989fd9e08409b90cf
12 schema:keywords FM radio
13 Gaussian process
14 Slepian model
15 Slepian model process
16 applications
17 approximation
18 asymptotic expansion
19 behavior
20 boundaries
21 conditional behavior
22 conditions
23 continuous time
24 crossing
25 crossing prediction
26 curve conditions
27 curve crossing
28 deal
29 derivatives
30 detection
31 distribution
32 dynamics
33 events
34 example
35 expansion
36 explicit structure
37 extreme value theory
38 extremes
39 fatigue
40 field
41 finite approximations
42 function representation
43 generalization
44 initial value
45 jump phenomenon
46 level crossing prediction
47 level curve conditions
48 levels
49 local extremes
50 manipulation
51 model
52 model processes
53 model structure
54 multipara-meter fields
55 noise
56 non-linear jump phenomena
57 optimal level crossing prediction
58 paper deals
59 parameters
60 part
61 phenomenon
62 prediction
63 probabilistic manipulation
64 process
65 radio
66 random function representation
67 random parameters
68 random waves
69 regression terms
70 representation
71 residual process
72 smooth boundary
73 structure
74 terms
75 theory
76 time
77 univariate processes
78 use
79 usefulness
80 value theory
81 values
82 vector process
83 vehicle dynamics
84 wave-characteristic distributions
85 waves
86 schema:name Use and Structure of Slepian Model Processes for Prediction and Detection in Crossing and Extreme Value Theory
87 schema:pagination 261-284
88 schema:productId N2dbc7e1cf2424dd09eaa3da633487274
89 Nd73aca70f6f04769a4a2aa8de6aa7cd7
90 schema:publisher N403aa311ddd34cc3ac6d061f4792b39d
91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010218558
92 https://doi.org/10.1007/978-94-017-3069-3_18
93 schema:sdDatePublished 2022-01-01T19:09
94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
95 schema:sdPublisher N4b941bf4ebb1449ebae47fe0b14c4c15
96 schema:url https://doi.org/10.1007/978-94-017-3069-3_18
97 sgo:license sg:explorer/license/
98 sgo:sdDataset chapters
99 rdf:type schema:Chapter
100 N18c76055aee44a00a58123775d962067 schema:familyName Oliveira
101 schema:givenName J. Tiago
102 rdf:type schema:Person
103 N2dbc7e1cf2424dd09eaa3da633487274 schema:name doi
104 schema:value 10.1007/978-94-017-3069-3_18
105 rdf:type schema:PropertyValue
106 N403aa311ddd34cc3ac6d061f4792b39d schema:name Springer Nature
107 rdf:type schema:Organisation
108 N4b941bf4ebb1449ebae47fe0b14c4c15 schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 N590fe5b9b5c945e3896746ebadb37683 rdf:first sg:person.012274436413.00
111 rdf:rest rdf:nil
112 N6e9ceafcea714cad8f32de1c3438ae03 rdf:first N18c76055aee44a00a58123775d962067
113 rdf:rest rdf:nil
114 N94b16fb80a38476989fd9e08409b90cf schema:isbn 978-90-481-8401-9
115 978-94-017-3069-3
116 schema:name Statistical Extremes and Applications
117 rdf:type schema:Book
118 Nd73aca70f6f04769a4a2aa8de6aa7cd7 schema:name dimensions_id
119 schema:value pub.1010218558
120 rdf:type schema:PropertyValue
121 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
122 schema:name Mathematical Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
125 schema:name Statistics
126 rdf:type schema:DefinedTerm
127 sg:person.012274436413.00 schema:affiliation grid-institutes:grid.4514.4
128 schema:familyName Lindgren
129 schema:givenName Georg
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012274436413.00
131 rdf:type schema:Person
132 grid-institutes:grid.4514.4 schema:alternateName Department of Mathematical Statistics, University of Lund, Box 725, S-220 07, Lund, Sweden
133 schema:name Department of Mathematical Statistics, University of Lund, Box 725, S-220 07, Lund, Sweden
134 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...