The Impacts of Climate Variability on Near-Term Policy Choices and the Value of Information View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2000

AUTHORS

Robert J. Lempert , Michael E. Schlesinger , Steven C. Bankes , Natalia G. Andronova

ABSTRACT

Variability is one of the most salient features of the earth’s climate, yet quantitative policy studies have generally ignored the impact of variability on society’s best choice of climate-change policy. This omission is troubling because an adaptive emissions-reduction strategy, one that adjusts abatement rates over time based on observations of damages and abatement costs, should perform much better against extreme uncertainty than static, best-estimate policies. However, climate variability can strongly affect the success of adaptive-abatement strategies by masking adverse trends or fooling society into taking too strong an action. This study compares the performance of a wide variety of adaptive greenhouse-gas-abatement strategies against a broad range of plausible future climate-change scenarios. We find that: i) adaptive strategies remain preferable to static, best-estimate policies even with very large levels of climate variability; ii) the most robust strategies are innovation sensitive, that is, adjust future emissions reduction rates on the basis of small changes in observed abatement costs but only for large changes in observed damages; and iii) information about the size of the variability is about a third to an eighth as valuable as information determining the value of the key parameters that represent the long-term, future climate-change state-of-the-world. More... »

PAGES

129-161

Book

TITLE

Societal Adaptation to Climate Variability and Change

ISBN

978-90-481-5494-4
978-94-017-3010-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-017-3010-5_8

DOI

http://dx.doi.org/10.1007/978-94-017-3010-5_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041594157


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "RAND, 1700 Main St., 90407-2138, Santa Monica, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.34474.30", 
          "name": [
            "RAND, 1700 Main St., 90407-2138, Santa Monica, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lempert", 
        "givenName": "Robert J.", 
        "id": "sg:person.01214111434.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214111434.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, 61801, Urbana, IL, USA", 
          "id": "http://www.grid.ac/institutes/grid.35403.31", 
          "name": [
            "Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, 61801, Urbana, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schlesinger", 
        "givenName": "Michael E.", 
        "id": "sg:person.015755327722.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015755327722.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RAND, 1700 Main St., 90407-2138, Santa Monica, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.34474.30", 
          "name": [
            "RAND, 1700 Main St., 90407-2138, Santa Monica, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bankes", 
        "givenName": "Steven C.", 
        "id": "sg:person.0733110456.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733110456.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, 61801, Urbana, IL, USA", 
          "id": "http://www.grid.ac/institutes/grid.35403.31", 
          "name": [
            "Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, 61801, Urbana, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Andronova", 
        "givenName": "Natalia G.", 
        "id": "sg:person.014372533443.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014372533443.13"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2000", 
    "datePublishedReg": "2000-01-01", 
    "description": "Variability is one of the most salient features of the earth\u2019s climate, yet quantitative policy studies have generally ignored the impact of variability on society\u2019s best choice of climate-change policy. This omission is troubling because an adaptive emissions-reduction strategy, one that adjusts abatement rates over time based on observations of damages and abatement costs, should perform much better against extreme uncertainty than static, best-estimate policies. However, climate variability can strongly affect the success of adaptive-abatement strategies by masking adverse trends or fooling society into taking too strong an action. This study compares the performance of a wide variety of adaptive greenhouse-gas-abatement strategies against a broad range of plausible future climate-change scenarios. We find that: i) adaptive strategies remain preferable to static, best-estimate policies even with very large levels of climate variability; ii) the most robust strategies are innovation sensitive, that is, adjust future emissions reduction rates on the basis of small changes in observed abatement costs but only for large changes in observed damages; and iii) information about the size of the variability is about a third to an eighth as valuable as information determining the value of the key parameters that represent the long-term, future climate-change state-of-the-world.", 
    "editor": [
      {
        "familyName": "Kane", 
        "givenName": "Sally M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Yohe", 
        "givenName": "Gary W.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-017-3010-5_8", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-90-481-5494-4", 
        "978-94-017-3010-5"
      ], 
      "name": "Societal Adaptation to Climate Variability and Change", 
      "type": "Book"
    }, 
    "keywords": [
      "abatement costs", 
      "climate variability", 
      "climate change policy", 
      "emission reduction rate", 
      "quantitative policy studies", 
      "value of information", 
      "policy choices", 
      "Climate Change (IPCC) states", 
      "emission reduction strategies", 
      "future climate change scenarios", 
      "abatement rates", 
      "extreme uncertainty", 
      "climate change scenarios", 
      "policy studies", 
      "policy", 
      "Earth's climate", 
      "abatement strategies", 
      "adverse trends", 
      "large levels", 
      "impact of variability", 
      "best choice", 
      "cost", 
      "variability", 
      "choice", 
      "climate", 
      "large changes", 
      "observations of damage", 
      "impact", 
      "observed damage", 
      "innovation", 
      "robust strategy", 
      "salient features", 
      "uncertainty", 
      "small changes", 
      "reduction rate", 
      "strategies", 
      "key parameters", 
      "society", 
      "changes", 
      "adaptive strategies", 
      "information", 
      "world", 
      "trends", 
      "values", 
      "rate", 
      "scenarios", 
      "omission", 
      "broad range", 
      "success", 
      "state", 
      "levels", 
      "range", 
      "features", 
      "one", 
      "performance", 
      "wide variety", 
      "study", 
      "basis", 
      "size", 
      "time", 
      "parameters", 
      "action", 
      "variety", 
      "damage", 
      "observations"
    ], 
    "name": "The Impacts of Climate Variability on Near-Term Policy Choices and the Value of Information", 
    "pagination": "129-161", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041594157"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-017-3010-5_8"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-017-3010-5_8", 
      "https://app.dimensions.ai/details/publication/pub.1041594157"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-06-01T22:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_358.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-017-3010-5_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-3010-5_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-3010-5_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-3010-5_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-3010-5_8'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      23 PREDICATES      91 URIs      84 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-017-3010-5_8 schema:about anzsrc-for:14
2 anzsrc-for:1402
3 schema:author Nbd81ed959ced4d8e9cd75d2477f65d92
4 schema:datePublished 2000
5 schema:datePublishedReg 2000-01-01
6 schema:description Variability is one of the most salient features of the earth’s climate, yet quantitative policy studies have generally ignored the impact of variability on society’s best choice of climate-change policy. This omission is troubling because an adaptive emissions-reduction strategy, one that adjusts abatement rates over time based on observations of damages and abatement costs, should perform much better against extreme uncertainty than static, best-estimate policies. However, climate variability can strongly affect the success of adaptive-abatement strategies by masking adverse trends or fooling society into taking too strong an action. This study compares the performance of a wide variety of adaptive greenhouse-gas-abatement strategies against a broad range of plausible future climate-change scenarios. We find that: i) adaptive strategies remain preferable to static, best-estimate policies even with very large levels of climate variability; ii) the most robust strategies are innovation sensitive, that is, adjust future emissions reduction rates on the basis of small changes in observed abatement costs but only for large changes in observed damages; and iii) information about the size of the variability is about a third to an eighth as valuable as information determining the value of the key parameters that represent the long-term, future climate-change state-of-the-world.
7 schema:editor N90d92fd899714cc298e3dfe8f2eba68b
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N13a7add083ae4c55991bf2265a69d94f
12 schema:keywords Climate Change (IPCC) states
13 Earth's climate
14 abatement costs
15 abatement rates
16 abatement strategies
17 action
18 adaptive strategies
19 adverse trends
20 basis
21 best choice
22 broad range
23 changes
24 choice
25 climate
26 climate change policy
27 climate change scenarios
28 climate variability
29 cost
30 damage
31 emission reduction rate
32 emission reduction strategies
33 extreme uncertainty
34 features
35 future climate change scenarios
36 impact
37 impact of variability
38 information
39 innovation
40 key parameters
41 large changes
42 large levels
43 levels
44 observations
45 observations of damage
46 observed damage
47 omission
48 one
49 parameters
50 performance
51 policy
52 policy choices
53 policy studies
54 quantitative policy studies
55 range
56 rate
57 reduction rate
58 robust strategy
59 salient features
60 scenarios
61 size
62 small changes
63 society
64 state
65 strategies
66 study
67 success
68 time
69 trends
70 uncertainty
71 value of information
72 values
73 variability
74 variety
75 wide variety
76 world
77 schema:name The Impacts of Climate Variability on Near-Term Policy Choices and the Value of Information
78 schema:pagination 129-161
79 schema:productId Nf0695990afa64b5cba7132f829600682
80 Nf3d519e217f7464294bcceba75d90739
81 schema:publisher Nf06a5b6f70aa4b278af652c4af6cd0cd
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041594157
83 https://doi.org/10.1007/978-94-017-3010-5_8
84 schema:sdDatePublished 2022-06-01T22:33
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher Na36d70496e4b4837a6bef3a844432771
87 schema:url https://doi.org/10.1007/978-94-017-3010-5_8
88 sgo:license sg:explorer/license/
89 sgo:sdDataset chapters
90 rdf:type schema:Chapter
91 N13a7add083ae4c55991bf2265a69d94f schema:isbn 978-90-481-5494-4
92 978-94-017-3010-5
93 schema:name Societal Adaptation to Climate Variability and Change
94 rdf:type schema:Book
95 N47db082d177e4a138b7fb7e734682037 rdf:first sg:person.0733110456.40
96 rdf:rest N588f5ec5a5904c62a8d9ed16b72ac971
97 N4e989c884fde458686be4960d2bde987 schema:familyName Yohe
98 schema:givenName Gary W.
99 rdf:type schema:Person
100 N588f5ec5a5904c62a8d9ed16b72ac971 rdf:first sg:person.014372533443.13
101 rdf:rest rdf:nil
102 N734ccf97c8564432971c69b2a2f389fc rdf:first N4e989c884fde458686be4960d2bde987
103 rdf:rest rdf:nil
104 N739e364db4114bc0a056f8e3d2fa3581 schema:familyName Kane
105 schema:givenName Sally M.
106 rdf:type schema:Person
107 N90d92fd899714cc298e3dfe8f2eba68b rdf:first N739e364db4114bc0a056f8e3d2fa3581
108 rdf:rest N734ccf97c8564432971c69b2a2f389fc
109 Na36d70496e4b4837a6bef3a844432771 schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 Nb9167c3715b04cafae7c4dae98f1e7cc rdf:first sg:person.015755327722.56
112 rdf:rest N47db082d177e4a138b7fb7e734682037
113 Nbd81ed959ced4d8e9cd75d2477f65d92 rdf:first sg:person.01214111434.56
114 rdf:rest Nb9167c3715b04cafae7c4dae98f1e7cc
115 Nf0695990afa64b5cba7132f829600682 schema:name dimensions_id
116 schema:value pub.1041594157
117 rdf:type schema:PropertyValue
118 Nf06a5b6f70aa4b278af652c4af6cd0cd schema:name Springer Nature
119 rdf:type schema:Organisation
120 Nf3d519e217f7464294bcceba75d90739 schema:name doi
121 schema:value 10.1007/978-94-017-3010-5_8
122 rdf:type schema:PropertyValue
123 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
124 schema:name Economics
125 rdf:type schema:DefinedTerm
126 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
127 schema:name Applied Economics
128 rdf:type schema:DefinedTerm
129 sg:person.01214111434.56 schema:affiliation grid-institutes:grid.34474.30
130 schema:familyName Lempert
131 schema:givenName Robert J.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214111434.56
133 rdf:type schema:Person
134 sg:person.014372533443.13 schema:affiliation grid-institutes:grid.35403.31
135 schema:familyName Andronova
136 schema:givenName Natalia G.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014372533443.13
138 rdf:type schema:Person
139 sg:person.015755327722.56 schema:affiliation grid-institutes:grid.35403.31
140 schema:familyName Schlesinger
141 schema:givenName Michael E.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015755327722.56
143 rdf:type schema:Person
144 sg:person.0733110456.40 schema:affiliation grid-institutes:grid.34474.30
145 schema:familyName Bankes
146 schema:givenName Steven C.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733110456.40
148 rdf:type schema:Person
149 grid-institutes:grid.34474.30 schema:alternateName RAND, 1700 Main St., 90407-2138, Santa Monica, CA, USA
150 schema:name RAND, 1700 Main St., 90407-2138, Santa Monica, CA, USA
151 rdf:type schema:Organization
152 grid-institutes:grid.35403.31 schema:alternateName Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, 61801, Urbana, IL, USA
153 schema:name Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, 61801, Urbana, IL, USA
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...