Representations of Groups, Related to SO(n−1), in Non-Canonical Bases, Special Functions, and Integral Transforms View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1993

AUTHORS

N. Ja. Vilenkin , A. U. Klimyk

ABSTRACT

In the preceding chapter we have considered spherical functions of irreducible representations of SO(n) and of related groups with respect to the canonical basis \(\{ \tilde \Xi _M^{n - 1,m}\} \) in \({\xi ^2}({S^{n - 2}})\).

PAGES

159-277

Book

TITLE

Representation of Lie Groups and Special Functions

ISBN

978-90-481-4103-6
978-94-017-2883-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-017-2883-6_2

DOI

http://dx.doi.org/10.1007/978-94-017-2883-6_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004563292


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Mathematics, C.I.S., The Correspondence Pedagogical Institute, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vilenkin", 
        "givenName": "N. Ja.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Academy of Sciences of Ukraine", 
          "id": "https://www.grid.ac/institutes/grid.418751.e", 
          "name": [
            "Institute of Theoretical Physics, C.I.S., Ukrainian Academy of Sciences, Kiev, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klimyk", 
        "givenName": "A. U.", 
        "type": "Person"
      }
    ], 
    "datePublished": "1993", 
    "datePublishedReg": "1993-01-01", 
    "description": "In the preceding chapter we have considered spherical functions of irreducible representations of SO(n) and of related groups with respect to the canonical basis \\(\\{ \\tilde \\Xi _M^{n - 1,m}\\} \\) in \\({\\xi ^2}({S^{n - 2}})\\).", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-017-2883-6_2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-90-481-4103-6", 
        "978-94-017-2883-6"
      ], 
      "name": "Representation of Lie Groups and Special Functions", 
      "type": "Book"
    }, 
    "name": "Representations of Groups, Related to SO(n\u22121), in Non-Canonical Bases, Special Functions, and Integral Transforms", 
    "pagination": "159-277", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-017-2883-6_2"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "15beda3b7d76a0fa7817c914992e242799a44c134696e667d07ddf86fd18c26d"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004563292"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Springer Netherlands", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-017-2883-6_2", 
      "https://app.dimensions.ai/details/publication/pub.1004563292"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T20:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000007.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-94-017-2883-6_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-2883-6_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-2883-6_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-2883-6_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-2883-6_2'


 

This table displays all metadata directly associated to this object as RDF triples.

58 TRIPLES      20 PREDICATES      24 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-017-2883-6_2 schema:author N8c74b153ccf0437ea4ea7c255d44a943
2 schema:datePublished 1993
3 schema:datePublishedReg 1993-01-01
4 schema:description In the preceding chapter we have considered spherical functions of irreducible representations of SO(n) and of related groups with respect to the canonical basis \(\{ \tilde \Xi _M^{n - 1,m}\} \) in \({\xi ^2}({S^{n - 2}})\).
5 schema:genre chapter
6 schema:inLanguage en
7 schema:isAccessibleForFree false
8 schema:isPartOf Nce6619f115234790956729e2922aee39
9 schema:name Representations of Groups, Related to SO(n−1), in Non-Canonical Bases, Special Functions, and Integral Transforms
10 schema:pagination 159-277
11 schema:productId N257e6a7ab42447b69b9b6fdcc00b44ed
12 Na577bd62de4d49afb52f38e765cd1395
13 Ne43986666a6a41d1932a38084762fbbf
14 schema:publisher N38c6d2058730437ab67e2ce4c1ff5bb5
15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004563292
16 https://doi.org/10.1007/978-94-017-2883-6_2
17 schema:sdDatePublished 2019-04-15T20:46
18 schema:sdLicense https://scigraph.springernature.com/explorer/license/
19 schema:sdPublisher Nf91ae3dd884e40e2a591fa5c4022d170
20 schema:url http://link.springer.com/10.1007/978-94-017-2883-6_2
21 sgo:license sg:explorer/license/
22 sgo:sdDataset chapters
23 rdf:type schema:Chapter
24 N257e6a7ab42447b69b9b6fdcc00b44ed schema:name readcube_id
25 schema:value 15beda3b7d76a0fa7817c914992e242799a44c134696e667d07ddf86fd18c26d
26 rdf:type schema:PropertyValue
27 N346e4b2eabdf459883e4e82cc8320ee3 schema:affiliation N5c0a53856c374014bdd34b7391e6da11
28 schema:familyName Vilenkin
29 schema:givenName N. Ja.
30 rdf:type schema:Person
31 N38c6d2058730437ab67e2ce4c1ff5bb5 schema:location Dordrecht
32 schema:name Springer Netherlands
33 rdf:type schema:Organisation
34 N5c0a53856c374014bdd34b7391e6da11 schema:name Department of Mathematics, C.I.S., The Correspondence Pedagogical Institute, Moscow, Russia
35 rdf:type schema:Organization
36 N6dc55ff57a6042f5b1d8e51d25dfac5b schema:affiliation https://www.grid.ac/institutes/grid.418751.e
37 schema:familyName Klimyk
38 schema:givenName A. U.
39 rdf:type schema:Person
40 N8c74b153ccf0437ea4ea7c255d44a943 rdf:first N346e4b2eabdf459883e4e82cc8320ee3
41 rdf:rest Nadd19a44a0c5411d86099459162722be
42 Na577bd62de4d49afb52f38e765cd1395 schema:name dimensions_id
43 schema:value pub.1004563292
44 rdf:type schema:PropertyValue
45 Nadd19a44a0c5411d86099459162722be rdf:first N6dc55ff57a6042f5b1d8e51d25dfac5b
46 rdf:rest rdf:nil
47 Nce6619f115234790956729e2922aee39 schema:isbn 978-90-481-4103-6
48 978-94-017-2883-6
49 schema:name Representation of Lie Groups and Special Functions
50 rdf:type schema:Book
51 Ne43986666a6a41d1932a38084762fbbf schema:name doi
52 schema:value 10.1007/978-94-017-2883-6_2
53 rdf:type schema:PropertyValue
54 Nf91ae3dd884e40e2a591fa5c4022d170 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 https://www.grid.ac/institutes/grid.418751.e schema:alternateName National Academy of Sciences of Ukraine
57 schema:name Institute of Theoretical Physics, C.I.S., Ukrainian Academy of Sciences, Kiev, Ukraine
58 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...