Positive Operators on Krein Spaces View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1992

AUTHORS

Y. A. Abramovich , C. D. Aliprantis , O. Burkinshaw

ABSTRACT

A Krein operator is a positive operator, acting on a partially ordered Banach space, that carries positive elements to strong units. The purpose of this paper is to present a survey of the remarkable spectral properties (most of which were established by M.G. Krein) of these operators. The proofs presented here seem to be simpler than the ones existing in the literature. Some new results are also obtained. For instance, it is shown that every positive operator on a Krein space which is not a multiple of the identity operator has a nontrivial hyperinvariant subspace. More... »

PAGES

1-22

References to SciGraph publications

  • 1907-06. Zur Theorie der Matrices in MATHEMATISCHE ANNALEN
  • 1971. Topological Vector Spaces in NONE
  • Book

    TITLE

    Positive Operators and Semigroups on Banach Lattices

    ISBN

    978-90-481-4205-7
    978-94-017-2721-1

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-94-017-2721-1_1

    DOI

    http://dx.doi.org/10.1007/978-94-017-2721-1_1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1018017876


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology and Cognitive Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Indiana University \u2013 Purdue University Indianapolis", 
              "id": "https://www.grid.ac/institutes/grid.257413.6", 
              "name": [
                "Department of Mathematics, IUPUI, Indianapolis, IN\u00a046205, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Abramovich", 
            "givenName": "Y. A.", 
            "id": "sg:person.013761237533.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013761237533.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Indiana University \u2013 Purdue University Indianapolis", 
              "id": "https://www.grid.ac/institutes/grid.257413.6", 
              "name": [
                "Department of Mathematics, IUPUI, Indianapolis, IN\u00a046205, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Aliprantis", 
            "givenName": "C. D.", 
            "id": "sg:person.014135050231.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014135050231.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Indiana University \u2013 Purdue University Indianapolis", 
              "id": "https://www.grid.ac/institutes/grid.257413.6", 
              "name": [
                "Department of Mathematics, IUPUI, Indianapolis, IN\u00a046205, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Burkinshaw", 
            "givenName": "O.", 
            "id": "sg:person.011747227346.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011747227346.83"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01449896", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036747242", 
              "https://doi.org/10.1007/bf01449896"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-9928-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038819455", 
              "https://doi.org/10.1007/978-1-4684-9928-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-9928-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038819455", 
              "https://doi.org/10.1007/978-1-4684-9928-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1992", 
        "datePublishedReg": "1992-01-01", 
        "description": "A Krein operator is a positive operator, acting on a partially ordered Banach space, that carries positive elements to strong units. The purpose of this paper is to present a survey of the remarkable spectral properties (most of which were established by M.G. Krein) of these operators. The proofs presented here seem to be simpler than the ones existing in the literature. Some new results are also obtained. For instance, it is shown that every positive operator on a Krein space which is not a multiple of the identity operator has a nontrivial hyperinvariant subspace.", 
        "editor": [
          {
            "familyName": "Huijsmans", 
            "givenName": "C. B.", 
            "type": "Person"
          }, 
          {
            "familyName": "Luxemburg", 
            "givenName": "W. A. J.", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-94-017-2721-1_1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-90-481-4205-7", 
            "978-94-017-2721-1"
          ], 
          "name": "Positive Operators and Semigroups on Banach Lattices", 
          "type": "Book"
        }, 
        "name": "Positive Operators on Krein Spaces", 
        "pagination": "1-22", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-94-017-2721-1_1"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "55d996c0c693f6562e0441e93e5709b3b7dfb132a00ef332c92c148fe7e737fd"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1018017876"
            ]
          }
        ], 
        "publisher": {
          "location": "Dordrecht", 
          "name": "Springer Netherlands", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-94-017-2721-1_1", 
          "https://app.dimensions.ai/details/publication/pub.1018017876"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T12:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000254.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-94-017-2721-1_1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-2721-1_1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-2721-1_1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-2721-1_1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-2721-1_1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    92 TRIPLES      23 PREDICATES      29 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-94-017-2721-1_1 schema:about anzsrc-for:17
    2 anzsrc-for:1701
    3 schema:author Ne22b2bc2d71a41dfa042b92b30149c1d
    4 schema:citation sg:pub.10.1007/978-1-4684-9928-5
    5 sg:pub.10.1007/bf01449896
    6 schema:datePublished 1992
    7 schema:datePublishedReg 1992-01-01
    8 schema:description A Krein operator is a positive operator, acting on a partially ordered Banach space, that carries positive elements to strong units. The purpose of this paper is to present a survey of the remarkable spectral properties (most of which were established by M.G. Krein) of these operators. The proofs presented here seem to be simpler than the ones existing in the literature. Some new results are also obtained. For instance, it is shown that every positive operator on a Krein space which is not a multiple of the identity operator has a nontrivial hyperinvariant subspace.
    9 schema:editor Na86fb24022154ebc875720c944c44d9b
    10 schema:genre chapter
    11 schema:inLanguage en
    12 schema:isAccessibleForFree false
    13 schema:isPartOf N4c67802367ea40a18731617319efd46f
    14 schema:name Positive Operators on Krein Spaces
    15 schema:pagination 1-22
    16 schema:productId N113903a44e404f669510addd6f0eddbb
    17 Ndb051cc2266443ee9834ef026644c648
    18 Nf5b548a75fa04457a23e36295259e9a3
    19 schema:publisher N941f0cdf55564ed08f70b2d2c2c98cef
    20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018017876
    21 https://doi.org/10.1007/978-94-017-2721-1_1
    22 schema:sdDatePublished 2019-04-15T12:31
    23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    24 schema:sdPublisher N7a6fddc3ee8b4df5bf4ea85ebcbf24ca
    25 schema:url http://link.springer.com/10.1007/978-94-017-2721-1_1
    26 sgo:license sg:explorer/license/
    27 sgo:sdDataset chapters
    28 rdf:type schema:Chapter
    29 N113903a44e404f669510addd6f0eddbb schema:name dimensions_id
    30 schema:value pub.1018017876
    31 rdf:type schema:PropertyValue
    32 N1461ac9ef8fc47c1ba8a196681fb21c2 rdf:first N4458b345338d45a49f62eca78bafb029
    33 rdf:rest rdf:nil
    34 N4458b345338d45a49f62eca78bafb029 schema:familyName Luxemburg
    35 schema:givenName W. A. J.
    36 rdf:type schema:Person
    37 N4c67802367ea40a18731617319efd46f schema:isbn 978-90-481-4205-7
    38 978-94-017-2721-1
    39 schema:name Positive Operators and Semigroups on Banach Lattices
    40 rdf:type schema:Book
    41 N7a6fddc3ee8b4df5bf4ea85ebcbf24ca schema:name Springer Nature - SN SciGraph project
    42 rdf:type schema:Organization
    43 N941f0cdf55564ed08f70b2d2c2c98cef schema:location Dordrecht
    44 schema:name Springer Netherlands
    45 rdf:type schema:Organisation
    46 N96b3c326161b478fb9a72390e5f2afb8 rdf:first sg:person.014135050231.02
    47 rdf:rest Nab56db24b69c48638c754ff0a879b44a
    48 Na86fb24022154ebc875720c944c44d9b rdf:first Nd12e223444494cf29973298b54ebfe91
    49 rdf:rest N1461ac9ef8fc47c1ba8a196681fb21c2
    50 Nab56db24b69c48638c754ff0a879b44a rdf:first sg:person.011747227346.83
    51 rdf:rest rdf:nil
    52 Nd12e223444494cf29973298b54ebfe91 schema:familyName Huijsmans
    53 schema:givenName C. B.
    54 rdf:type schema:Person
    55 Ndb051cc2266443ee9834ef026644c648 schema:name doi
    56 schema:value 10.1007/978-94-017-2721-1_1
    57 rdf:type schema:PropertyValue
    58 Ne22b2bc2d71a41dfa042b92b30149c1d rdf:first sg:person.013761237533.23
    59 rdf:rest N96b3c326161b478fb9a72390e5f2afb8
    60 Nf5b548a75fa04457a23e36295259e9a3 schema:name readcube_id
    61 schema:value 55d996c0c693f6562e0441e93e5709b3b7dfb132a00ef332c92c148fe7e737fd
    62 rdf:type schema:PropertyValue
    63 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
    64 schema:name Psychology and Cognitive Sciences
    65 rdf:type schema:DefinedTerm
    66 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Psychology
    68 rdf:type schema:DefinedTerm
    69 sg:person.011747227346.83 schema:affiliation https://www.grid.ac/institutes/grid.257413.6
    70 schema:familyName Burkinshaw
    71 schema:givenName O.
    72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011747227346.83
    73 rdf:type schema:Person
    74 sg:person.013761237533.23 schema:affiliation https://www.grid.ac/institutes/grid.257413.6
    75 schema:familyName Abramovich
    76 schema:givenName Y. A.
    77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013761237533.23
    78 rdf:type schema:Person
    79 sg:person.014135050231.02 schema:affiliation https://www.grid.ac/institutes/grid.257413.6
    80 schema:familyName Aliprantis
    81 schema:givenName C. D.
    82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014135050231.02
    83 rdf:type schema:Person
    84 sg:pub.10.1007/978-1-4684-9928-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038819455
    85 https://doi.org/10.1007/978-1-4684-9928-5
    86 rdf:type schema:CreativeWork
    87 sg:pub.10.1007/bf01449896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036747242
    88 https://doi.org/10.1007/bf01449896
    89 rdf:type schema:CreativeWork
    90 https://www.grid.ac/institutes/grid.257413.6 schema:alternateName Indiana University – Purdue University Indianapolis
    91 schema:name Department of Mathematics, IUPUI, Indianapolis, IN 46205, USA
    92 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...