Positive Operators on Krein Spaces View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1992

AUTHORS

Y. A. Abramovich , C. D. Aliprantis , O. Burkinshaw

ABSTRACT

A Krein operator is a positive operator, acting on a partially ordered Banach space, that carries positive elements to strong units. The purpose of this paper is to present a survey of the remarkable spectral properties (most of which were established by M.G. Krein) of these operators. The proofs presented here seem to be simpler than the ones existing in the literature. Some new results are also obtained. For instance, it is shown that every positive operator on a Krein space which is not a multiple of the identity operator has a nontrivial hyperinvariant subspace. More... »

PAGES

1-22

References to SciGraph publications

  • 1907-06. Zur Theorie der Matrices in MATHEMATISCHE ANNALEN
  • 1971. Topological Vector Spaces in NONE
  • Book

    TITLE

    Positive Operators and Semigroups on Banach Lattices

    ISBN

    978-90-481-4205-7
    978-94-017-2721-1

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-94-017-2721-1_1

    DOI

    http://dx.doi.org/10.1007/978-94-017-2721-1_1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1018017876


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology and Cognitive Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Indiana University \u2013 Purdue University Indianapolis", 
              "id": "https://www.grid.ac/institutes/grid.257413.6", 
              "name": [
                "Department of Mathematics, IUPUI, Indianapolis, IN\u00a046205, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Abramovich", 
            "givenName": "Y. A.", 
            "id": "sg:person.013761237533.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013761237533.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Indiana University \u2013 Purdue University Indianapolis", 
              "id": "https://www.grid.ac/institutes/grid.257413.6", 
              "name": [
                "Department of Mathematics, IUPUI, Indianapolis, IN\u00a046205, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Aliprantis", 
            "givenName": "C. D.", 
            "id": "sg:person.014135050231.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014135050231.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Indiana University \u2013 Purdue University Indianapolis", 
              "id": "https://www.grid.ac/institutes/grid.257413.6", 
              "name": [
                "Department of Mathematics, IUPUI, Indianapolis, IN\u00a046205, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Burkinshaw", 
            "givenName": "O.", 
            "id": "sg:person.011747227346.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011747227346.83"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01449896", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036747242", 
              "https://doi.org/10.1007/bf01449896"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-9928-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038819455", 
              "https://doi.org/10.1007/978-1-4684-9928-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-9928-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038819455", 
              "https://doi.org/10.1007/978-1-4684-9928-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1992", 
        "datePublishedReg": "1992-01-01", 
        "description": "A Krein operator is a positive operator, acting on a partially ordered Banach space, that carries positive elements to strong units. The purpose of this paper is to present a survey of the remarkable spectral properties (most of which were established by M.G. Krein) of these operators. The proofs presented here seem to be simpler than the ones existing in the literature. Some new results are also obtained. For instance, it is shown that every positive operator on a Krein space which is not a multiple of the identity operator has a nontrivial hyperinvariant subspace.", 
        "editor": [
          {
            "familyName": "Huijsmans", 
            "givenName": "C. B.", 
            "type": "Person"
          }, 
          {
            "familyName": "Luxemburg", 
            "givenName": "W. A. J.", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-94-017-2721-1_1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-90-481-4205-7", 
            "978-94-017-2721-1"
          ], 
          "name": "Positive Operators and Semigroups on Banach Lattices", 
          "type": "Book"
        }, 
        "name": "Positive Operators on Krein Spaces", 
        "pagination": "1-22", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-94-017-2721-1_1"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "55d996c0c693f6562e0441e93e5709b3b7dfb132a00ef332c92c148fe7e737fd"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1018017876"
            ]
          }
        ], 
        "publisher": {
          "location": "Dordrecht", 
          "name": "Springer Netherlands", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-94-017-2721-1_1", 
          "https://app.dimensions.ai/details/publication/pub.1018017876"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T12:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000254.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-94-017-2721-1_1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-2721-1_1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-2721-1_1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-2721-1_1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-017-2721-1_1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    92 TRIPLES      23 PREDICATES      29 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-94-017-2721-1_1 schema:about anzsrc-for:17
    2 anzsrc-for:1701
    3 schema:author N76cb201ae4bf47358b177b23e7d3bb53
    4 schema:citation sg:pub.10.1007/978-1-4684-9928-5
    5 sg:pub.10.1007/bf01449896
    6 schema:datePublished 1992
    7 schema:datePublishedReg 1992-01-01
    8 schema:description A Krein operator is a positive operator, acting on a partially ordered Banach space, that carries positive elements to strong units. The purpose of this paper is to present a survey of the remarkable spectral properties (most of which were established by M.G. Krein) of these operators. The proofs presented here seem to be simpler than the ones existing in the literature. Some new results are also obtained. For instance, it is shown that every positive operator on a Krein space which is not a multiple of the identity operator has a nontrivial hyperinvariant subspace.
    9 schema:editor N9d974bc6256f4d9f9400e056f304db39
    10 schema:genre chapter
    11 schema:inLanguage en
    12 schema:isAccessibleForFree false
    13 schema:isPartOf N343524d2d19f440c9032e8fca72d88cf
    14 schema:name Positive Operators on Krein Spaces
    15 schema:pagination 1-22
    16 schema:productId N207f55a7910f4220a1b145eb2b51539e
    17 N3b89296585744b46bdfc38d7b52f2341
    18 Ncb9d4fc2725f42148df4bc571c8f73cc
    19 schema:publisher N5e91149953b44178ba2a51d062d08bf9
    20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018017876
    21 https://doi.org/10.1007/978-94-017-2721-1_1
    22 schema:sdDatePublished 2019-04-15T12:31
    23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    24 schema:sdPublisher N045622b8702b43429ee9fa783db18229
    25 schema:url http://link.springer.com/10.1007/978-94-017-2721-1_1
    26 sgo:license sg:explorer/license/
    27 sgo:sdDataset chapters
    28 rdf:type schema:Chapter
    29 N045622b8702b43429ee9fa783db18229 schema:name Springer Nature - SN SciGraph project
    30 rdf:type schema:Organization
    31 N047083ef32cc44b191376ea742cbe83d schema:familyName Huijsmans
    32 schema:givenName C. B.
    33 rdf:type schema:Person
    34 N0e3115ff94c0409692e1fb88c4bb4947 rdf:first sg:person.011747227346.83
    35 rdf:rest rdf:nil
    36 N207f55a7910f4220a1b145eb2b51539e schema:name doi
    37 schema:value 10.1007/978-94-017-2721-1_1
    38 rdf:type schema:PropertyValue
    39 N343524d2d19f440c9032e8fca72d88cf schema:isbn 978-90-481-4205-7
    40 978-94-017-2721-1
    41 schema:name Positive Operators and Semigroups on Banach Lattices
    42 rdf:type schema:Book
    43 N3b89296585744b46bdfc38d7b52f2341 schema:name readcube_id
    44 schema:value 55d996c0c693f6562e0441e93e5709b3b7dfb132a00ef332c92c148fe7e737fd
    45 rdf:type schema:PropertyValue
    46 N5e91149953b44178ba2a51d062d08bf9 schema:location Dordrecht
    47 schema:name Springer Netherlands
    48 rdf:type schema:Organisation
    49 N76cb201ae4bf47358b177b23e7d3bb53 rdf:first sg:person.013761237533.23
    50 rdf:rest N91652f8a2ff047c39461ad93e10064dc
    51 N85e6d238ff9c4f8fb9ac0e3067cefb8f schema:familyName Luxemburg
    52 schema:givenName W. A. J.
    53 rdf:type schema:Person
    54 N91652f8a2ff047c39461ad93e10064dc rdf:first sg:person.014135050231.02
    55 rdf:rest N0e3115ff94c0409692e1fb88c4bb4947
    56 N9d974bc6256f4d9f9400e056f304db39 rdf:first N047083ef32cc44b191376ea742cbe83d
    57 rdf:rest Na7bd466c7b8e49b6a666f67840f93240
    58 Na7bd466c7b8e49b6a666f67840f93240 rdf:first N85e6d238ff9c4f8fb9ac0e3067cefb8f
    59 rdf:rest rdf:nil
    60 Ncb9d4fc2725f42148df4bc571c8f73cc schema:name dimensions_id
    61 schema:value pub.1018017876
    62 rdf:type schema:PropertyValue
    63 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
    64 schema:name Psychology and Cognitive Sciences
    65 rdf:type schema:DefinedTerm
    66 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Psychology
    68 rdf:type schema:DefinedTerm
    69 sg:person.011747227346.83 schema:affiliation https://www.grid.ac/institutes/grid.257413.6
    70 schema:familyName Burkinshaw
    71 schema:givenName O.
    72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011747227346.83
    73 rdf:type schema:Person
    74 sg:person.013761237533.23 schema:affiliation https://www.grid.ac/institutes/grid.257413.6
    75 schema:familyName Abramovich
    76 schema:givenName Y. A.
    77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013761237533.23
    78 rdf:type schema:Person
    79 sg:person.014135050231.02 schema:affiliation https://www.grid.ac/institutes/grid.257413.6
    80 schema:familyName Aliprantis
    81 schema:givenName C. D.
    82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014135050231.02
    83 rdf:type schema:Person
    84 sg:pub.10.1007/978-1-4684-9928-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038819455
    85 https://doi.org/10.1007/978-1-4684-9928-5
    86 rdf:type schema:CreativeWork
    87 sg:pub.10.1007/bf01449896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036747242
    88 https://doi.org/10.1007/bf01449896
    89 rdf:type schema:CreativeWork
    90 https://www.grid.ac/institutes/grid.257413.6 schema:alternateName Indiana University – Purdue University Indianapolis
    91 schema:name Department of Mathematics, IUPUI, Indianapolis, IN 46205, USA
    92 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...